
 

                  

JOURNAL 

  

of the 

  

TRIPURA MATHEMATICAL SOCIETY 
  

VOLUME  —   25               2023   

Published By   

  

  

  

TRIPURA MATHEMATICAL SOCIETY   

Agartala, Tripura, India   

ISSN 0972  – 132 0   



JOURNAL OF THE TRIPURA MATHEMATICAL SOCIETY  

website :  www.tms.in.org 

Email : information.tms@gmail.com  

  

                                                                       Editor - in - charge  

          Dr. Shouvik Bhattachaya  

Dept. of Mathematics, Tripura University   

Suryamaninagar-799022, Agartala, India  

Email: shouvik.bagla@gmail.com  

                        Softcopy (pdf) of the manuscript may be sent to the Editor-in-Chief or any of area editor.  

  

1. R. N. Bhaumik :           Topology, Fuzzy & Rough Sets and  

    Email : rabi.nanda.bhaumik@gmail.com       Applications  

2. Prof. M. K. Chakraborty :         Logic, Fuzzy & Rough Set  

    Email : mihirc4@mail.com  

3. Prof. U. C. De :           Differential Geometry  

    Email : uc_de@yahoo.com  

4. Prof. Charles Dorsett :          Topology  

    Email : charles.dorsett@tamuc.edu  

5. Prof. S. Ganguly :           Real Analysis  

    Email : gangulydk@yahoo.com  

6. Prof. B. N. Mandal :           Applied Mathematics  

    Email : biren@isical.ac.in  

7. Prof. A. Mukherjee                                                                 Topology, Fuzzy & Rough Sets and Soft Set  

     E-mail: anjan2002_m@yahoo.co.in  

8. Prof. S. K. Pal :           Soft Computing, Rough Set  

    Email : skpal@iccc.org  

9. Prof. James F Peters                                                              Proximity Spaces & Computational Topology       

E-mail: ames.peters3@umanitoba.ca  

10. Prof. Ekrem Savas :          Sum ability Theory, Sequence Spaces  

    Email : ekremsavas@yahoo.com  

11. Prof. M. K. Sen :           Algebra  

    Email : senmk@yahoo.com  

12. Prof. H. M. Srivastava :         Functional Analysis, Complex Analysis  

      Email : harimsri@math.uvic.ca  

13. Prof. P. D. Srivastava :         Functional Analysis, Cryptography  

      Email : pds@maths.iitkgp.ernet.in  

14. Prof. T. Thrivikraman :         Algebra, Fuzzy Topology, Graph Theory  

      Email : thekkedathumana@yahoo.co.in  

15. Prof. B. C. Tripathy :                        Sequence Space, Topology, Fuzzy Set  

      Email : tripathybe@yahoo.com  

16. Prof. V. Vetrval :           Non-linear Analysis, Optimization, Fixed Point  

      Email : vetria@iitm.ac.in        Theory  

17.Prof. Valentina Emilia Balas                                                   Fuzzy Set 

Email: balas@drbalas.ro 



                        

                                   

                                                                  Contents 

 

1. Anjan Mukherjee; Interval-Valued Intuitionistic Neutrosophic Sets, Interval-valued 

Intuitionisti Neutrosophic Soft Sets and Their Application in Decision Making Problem 

.….……………………………………………………………………….………...…..   1-12 

2. Ganesh Bahadur Basnet, Narayan Prasad Pahari, and Resham Prasad Paudel; Some New  

Integral’s Representations for the Gauss’s Hypergeometric Function with Applications.13-21 

3. Bishnupada Debnath; Characterizations of Multi Fermatean Fuzzy Lie Ideals……….   22-38 

4. Kshetrimayum Renubebeta Devi; On Statistical Weak Convergence in Pringsheim’s Sense 

 of Double Sequences…………………………………………………………………    39-47 

5. Amar Jyoti Dutta; Class of Difference Double Sequences of Interval Numbers………   48-56 

6. Pranjal Saikia and Achyutananda Baruah; Difference Gai Sequences of Interval numbers  

with Orlicz Function.                                                                                                   ..... 57-67 

7. Bibhajyoti Tamuli; Difference Lacunary Weak Convergence of Sequences Defined by Orlicz  

Function...................................................……………………..……………...………..  68-78 

8. Ashoke Dutta; On Orbits of Sequences of Non-Newtonian Numbers………...............  79-92 

9. Tapasi Deb; Some Properties of Ideal Convergent Sequence Spaces of Bi-Complex 

Numbers……………………………………………………………………….…..….93-107 

10. Rakhal Das and Anjan Mukherjee; A New Generalization of Set Theory………..….108-118 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

1 
 

Interval- Valued Intuitionistic Neutrosophic Sets , Interval-valued Intuitionistic 

Neutrosophic Soft Sets And Their Application In Decision Making Problem 

Anjan Mukherjee 

Retd. Professor,Department of Mathematics, Tripura University Agartala -799022; Tripura, 

INDIA; e- mail: mukherjee123anjan@gmail.com 

*Correspondence: Anjan Mukherjee, mukherjee123anjan@gmail.com  

Abstract: In this paper we study the concept of interval-valued intuitionistic neutrosophic 

sets(IVINsets). Some definitions and operations have been proposed. The notion of . interval-

valued intuitionistic neutrosophic soft sets( IVINSsets} are introduced. It is a combination of 

soft set and interval-valued intuitionistic neutrosophic set. Lastly, an application has been 

shown with the above concepts in decision making problem. 

Keywords: : Interval-Valued Neutrosophic Set, Intuitionistic Neutrosophic Set, Interval- 

Valued Intuitionistic Neutrosophic Set , Interval-valued intuitionistic Neutrosophic Soft Set,  

Decision Making Problem. 

AMS Classification No : 03E72, 03E75. 

1. Introduction:  Smarandache proposed neutrosophic logic and neutrosophic sets (NSs) in 

1999 [9]. A NS is a set in which elements of the universe has respective degrees of truth, 

indeterminacy and falsity. They lie in the nonstandard unit interval of ]0-, 1+[. The uncertainty 

presented here (i.e, indeterminacy factor) is independent of the truth and falsity values. Wang 

et al. [10] defined IVN sets and their logic operation rules in 2005. In 2009 Bhowmik and Pal 

[1] studied the Intuitonistic neutrosophic set and presented various properties of it. In 1999 

Motodtsov [7] introduce the concept soft set which was completely a new approach for dealiy 

with vagueness and uncertainties. Maji [6] introduced neutrosophic soft set by the concept of 

neutrosophic set and soft set. The concept of intuitonistic neutrosophic soft set [2] was 

introduced by  said and  Samarandache in 2013. In 2017, interval-valued neutrosophic soft set 

was introduced by  Deli [5]. Chinnadurai and  Bobin [4] introduced  Interval Valued 

Intuitionistic Neutrosophic Soft Set and its Application on Diagnosing Psychiatric Disorder by 

Using Similarity Measure in 2021. 
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This paper is an attempt to introduce the concept in interval-valued intuitonistic neutrosophic 

set and interval-valued intuitonistic neutrosophic soft set which are different from [4]. We 

introduce same basic definition and operations on it. We also introduce the concept of interval-

valued intuitonistic neutrosophic soft set. It is a combination of the concepts of interval-valued 

intuitonistic set and soft set. In application is also presented. The organization of this paper is 

as follows: in section 2 we briefly present some basic definitions and results which will be used 

in the result of the paper. In section 3 IVIN set and IVINS set are defined. In section 4 an 

application of IVINS set in a decision making problem has been shown. Conclusion are there 

in the  section 5. 

2. Preliminary and Basic Definition. 

In this section we recall some basic definitions and results for our future work. 

Definition 2.1 [9 ] Let U be a universe of elemints the neutrosophic set A is an object having 

the form A = {<x, TA(x), IA(x), FA(x)>:xU}. the function T, I, F; U→[0, 1] define respectively 

the degree of membership, the degree of indeterminacy and degree of non-membership of the 

element xU to the set A. Here -0≤ TA(x)+IA(x)+ FA(x)≤3+. From philosophical point of view, 

the neutrosophic set takes the value from the real standard or non-standard sub set of ]-0, 1+[. 

But we need to take the interval [0, 1] for technical application ]-0, 1+[ will be different to be 

apply in the real applications such as in scientific and engineering problems. 

Definition 2.2 [9 ] A neutrosophic set A is contained in another neutrosophic set Bi.eAB if ∀ 

xU, TA(x)≤ TB(x), IA(x)≤ IB(x) and FA(x)≥ FB(x). 

Definition 2.3 [8 ] Let U be the non-empty fixed set. An interval valued neutrosophic 

set(IVNS) A in U is of the form 𝐴 = {< 𝑥, 𝑇𝐴(𝑥), 𝐼𝐴(𝑥), 𝐹𝐴(𝑥) >: 𝑥 ∈ 𝑈} 

where𝑇𝐴(𝑥) = [𝑇𝐴
𝑙(𝑥), 𝑇𝐴

𝑟(𝑥)], 𝐼𝐴(𝑥) = [𝐼𝐴
𝑙 (𝑥), 𝐼𝐴

𝑟(𝑥)], and 𝐹𝐴(𝑥) = [𝐹𝐴
𝑙(𝑥), 𝐹𝐴

𝑟(𝑥)] 

Which represents the degree of membership function, indeterminacy function and non-

membership function for each part 𝑥 ∈ 𝑈 in to the set 𝐴  where for each element 𝑥 ∈

𝑈, 𝑇𝐴(𝑥) ∈ 𝐼𝑛𝑡[0, 1], 𝐼𝐴(𝑥) ∈ 𝐼𝑛𝑡[0, 1], 𝐹𝐴(𝑥) ∈ 𝐼𝑛𝑡[0, 1], where Int([0, 1]) denotes the set 

of all closed sub intervals of [0, 1].   
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Definition 2.4 [8 ]The complement of an IVN set A = {<x, [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝐹𝐴
𝑙(x), 

𝐹𝐴
𝑟(x)]>: xU} is denoted by  

Ac={<x, [𝐹𝐴
𝑙(x), 𝐹𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)]>: xU}. The maximum of an IVN set is 

{<x, [1, 1], [0, 0], [0, 1]> xU} and the minimum is {<x, [0, 0], [0, 0], [1, 1]> xU}. 

Definition 2.5 [1,2 ] An element x of U is called significant with respect to neutrosophic set A 

of U if the degree of true-membership or indeterminacy membership or falsity membership 

value i.e, TA(x) or IA(x) or FA(x)≤0.5, otherwise we call it insignificant. For neutrosophic set the 

true-membership, indeterminacy membership and falsity membership all cannot be significant. 

An intuitinistic neutrosophic set A is defined by  

A = {<x, TA(x), IA(x), FA(x)>:xU} 

Here min{ TA(x), FA(x)} ≤0.5 

min{ TA(x), IA(x)} ≤0.5 

min{ FA(x), IA(x)} ≤0.5, for all xU. 

also 0≤ TA(x)+ IA(x)+ FA(x)≤2. 

Definition 2.6 [3,7] Let U is an initial universe set. E is a set of parameters. Let P(U) denotes 

the power set of U. Consider a non-empty set A, AE. A pair (F, A) is called a soft set over U. 

F is a mapping given by F:A→P(A). 

3. Interval-valued intuitinistic neutrosophic set and Interval-valued intuitinistic 

neutrosophic soft set. 

In this section we proposed the notion of IVIN set. We also study on hybrid structure involving 

both IVIN set and soft set. In  the definitions we apply the concept of Bhowmik and Pal [1] 

and  the concept of Saha and Said [8]. 
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Definition 3.1 Let U be a space of points (objects) with xU. An interval-valued intuitinistic 

neutrosophic set (IVINSet) in U is characterized by truth membership function TA(x), 

indeterminacy membership function IA(x) and falsity membership function FA(x). For each 

xU, TA(x), IA(x), FA(x) Int [0, 1]. 

A = {<x, [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝐹𝐴
𝑙(x), 𝐹𝐴

𝑟(x)]>: xU} 

Here 0≤𝑇𝐴
𝑙(x)+𝐼𝐴

𝑙 (x)+𝐹𝐴
𝑙(x)≤2 

And 0≤𝑇𝐴
𝑟(x)+𝐼𝐴

𝑟(x)+𝐹𝐴
𝑟(x)≤2……(A) 

With the condition  

min{
𝑇𝐴
𝑙 (𝑥)+ 𝑇𝐴

𝑟(𝑥)

2
,
𝐹𝐴
𝑙 (𝑥)+ 𝐹𝐴

𝑟(𝑥)

2
} ≤ 0.5 

min{
𝑇𝐴
𝑙 (𝑥)+ 𝑇𝐴

𝑟(𝑥)

2
,
𝐼𝐴
𝑙 (𝑥)+ 𝐼𝐴

𝑟(𝑥)

2
} ≤ 0.5 

min{
𝐼𝐴
𝑙 (𝑥)+ 𝐼𝐴

𝑟(𝑥)

2
,
𝐹𝐴
𝑙 (𝑥)+ 𝐹𝐴

𝑟(𝑥)

2
} ≤ 0.5 

The condition (A) can be replaced by  

0≤sup TA(x)+sup IA(x)+sup FA(x)≤2. 

Example 3.2Assume that the universe of discourse U={u1, u2, u3} where u1, u2 and u3 are 

subsets of [0, 1] and they are obtained from some question arise of some experts and impose 

their opinion in three components. The interval degree of goodness, the interval degree of 

indeterminacy and the interval degree of poorness to explain the characteristics of the object. 

Suppose A is an IVIN set of U then  

A= {<u1, [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]>, <u2, [0.3, 0.5], [0.1, 0.3], [0.4, 0.8]>, <u3, [0.4, 1], 

[0.2, 0.4], [0.4, 0.6]>} 
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For u1 

Here min{
0.2+0.4

2
, 
0.3+0.5

2
} =min{0.3, 0.4}≤0.5 

min{
0.2+0.4

2
, 
0.4+0.6

2
} =min{0.3, 0.5}≤0.5 

min{
0.3+0.5

2
, 
0.4+0.6

2
} =min{0.4, 0.5}≤0.5 

Similarly for u2 and u3. 

The maximum of an IVN set is <[1, 1], [0, 0], [0, 1]>and the minimum is < [0, 0], [0, 0], [1, 

1]>. Here the truth membership interval and falsity membership interval are altered while the 

indeterminacy membership interval is unchanged. 

Definition 3.3 Let A = {<x, [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝐹𝐴
𝑙(x), 𝐹𝐴

𝑟(x)]>: xU} be an IVIN set. 

Then the compliment of A is denoted by  

Ac={<x, [𝐹𝐴
𝑙(x), 𝐹𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)]>: xU}. 

Consider the example 3.2. 

Here A= {<x1, [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]>, <x2, [0.3, 0.5], [0.1, 0.3], [0.4, 0.8]>, <x3, [0.4, 

0.5], [0.2, 0.4], [0.4, 0.6]>}.  

Then Ac={<x1, [0.3, 0.5], [0.4, 0.6], [0.2, 0.4]>, <x2, [0.4, 0.8], [0.1, 0.3], [0.3, 0.5]>, <x3, 

[0.4, 0.6], [0.2, 0.4], [0.4, 0.5]>}. Then Ac is also an IVIN set. 

Note: If we define the complement of A by Ac={<x, [𝐹𝐴
𝑙(x), 𝐹𝐴

𝑟(x)], [1 − 𝐼𝐴
𝑟(x), 1 − 𝐼𝐴

𝑙 (x)], 

[𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)]>: xU}{like previous literature] 

Then consider the example 3.2. Then Ac={<x1, [0.3, 0.5], [0.4, 0.6], [0.2, 0.4]>, <x2, [0.4, 

0.8], [0.1, 0.3], [0.3, 0.5]>, <x3, [0.4, 0.6], [0.2, 0.4], [0.4, 0.5]>}. 
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Here for x2, 

min{
0.4+0.8

2
, 
0.7+0.9

2
} =min{0.6, 0.8}≰0.5 

So Ac is not an IVIN set. 

Definition 3.4 Let U be an initial universe AE be a set of parameters. Let IVIN(U) denotes 

the set of all interval-valued intuionistic neutrosophic sets of U. The collection of (F, A) 

performed to be the interval-valued Intuitonisticneutrosophic soft set over U. Here F is a 

mapping given by F:A→ IVIN(U). 

Example 3.5 Let U be the set of hours under consideration. E is the set of parameters for 

qualities. Each parameter is an interval-valued intuitonistic neutrosophic word or sentence 

involving interval-valued intuitionistic neutrosophic words. 

Consider E={e1, e2, e3, e4, e5, e6, e7} the set of parameters. There are five elements in the 

universe U. U={u1, u2, u3, u4, u5}. AE where A={e1, e2, e3, e4} e1 stands for expensive, e2 

stands for green surrounding, e3 stands for made of wooden, e4 stands for cheap. 

Suppose that  

F(expensive) = {<u1, [0.4, 0.6], [0.5, 0.7], [0.2, 0.4]>, <u2, [0.3, 0.5], [0.5, 0.9], [0.1, 0.3]>, 

<u3, [0.5, 0.7], [0.1, 0.3], [0.2, 0.4]>, <u4, [0.5, 0.9], [0.2, 0.4], [0.1, 0.3]>, <u5, [0.6, 1], [0.1, 

0.3], [0.2, 0.4]>}. 

F(green surrounding) = {<u1, [0.4, 0.8], [0.2, 0.4], [0.4, 0.6]>, <u2, [0.5, 0.9], [0.3, 0.5], [0.2, 

0.4]>, <u3, [0.7, 0.9], [0, 0.2], [0.1, 0.3]>, <u4, [0.5, 0.9], [0, 0.2], [0.2, 0.4]>, <u5, [0.6, 1], 

[0.2, 0.4], [0.3, 0.5]>}. 

F(made of wooden) = {<u1, [0.5, 0.9], [0.3, 0.5], [0.2, 0.4]>, <u2, [0.4, 0.8], [0, 0.2], [0.1, 

0.3]>, <u3, [0.4, 1], [0.1, 0.3], [0.4, 0.6]>, <u4, [0.3, 0.7], [0.1, 0.3], [0.4, 0.8]>, <u5, [0.4, 1], 

[0.2, 0.4], [0.1, 0.3]>}. 

F(Cheap) = {<u1, [0.6, 1], [0, 0.2], [0.3, 0.5]>, <u2, [0.2, 0.6], [0.1, 0.3], [0.4, 0.8]>, <u3, [0.2, 

0.4], [0.4, 0.8], [0.3, 0.5]>, <u4, [0.2, 0.6], [0.6, 1], [0.4, 0.6]>, <u5, [0.2, 0.4], [0.4, 0.6], [0.4, 

1]>}. 
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Definition 3.6 Let A and B are two IVIN sets. A = {<x, [𝑇𝐴
𝑙(x), 𝑇𝐴

𝑟(x)], [𝐼𝐴
𝑙 (x), 𝐼𝐴

𝑟(x)], [𝐹𝐴
𝑙(x), 

𝐹𝐴
𝑟(x)]>: xX} where 0≤sup TA(x)+sup IA(x)+sup FA(x)≤2 and B = {<x, [𝑇𝐵

𝑙 (x), 𝑇𝐵
𝑟(x)], [𝐼𝐵

𝑙 (x), 

𝐼𝐵
𝑟(x)], [𝐹𝐵

𝑙 (x), 𝐹𝐵
𝑟(x)]>: xX} where 0≤sup TB(x)+sup IB(x)+sup FB(x)≤2. Then A is contained 

in Bi.eAB if and only if  

𝑇𝐴
𝑙(x)≤𝑇𝐵

𝑙 (x), 𝑇𝐴
𝑟(x)≤𝑇𝐵

𝑟(x), for all xX 

𝐼𝐴
𝑙 (x)≥𝐼𝐵

𝑙 (x), 𝐼𝐴
𝑟(x)≥𝐼𝐵

𝑟(x), for all xX 

𝐹𝐴
𝑙(x)≥𝐹𝐵

𝑙 (x), 𝐹𝐴
𝑟(x)≥𝐹𝐵

𝑟(x), for all xX 

Definition 3.7 The union of two IVIN sets A and B is defined as C=AB, where true-

membership, indeterminacy membership and falsity membership functions related n those of 

A and B by   

𝑇𝐶
𝑙(x)=max{𝑇𝐴

𝑙(x),𝑇𝐵
𝑙 (x)}, 𝑇𝐶

𝑟(x)=max{𝑇𝐴
𝑟(x),𝑇𝐵

𝑟(x)}, for all xX 

𝐼𝐶
𝑙 (x)=min{𝐼𝐴

𝑙 (x),𝐼𝐵
𝑙 (x)}, 𝐼𝐶

𝑟(x)=min{𝐼𝐴
𝑟(x),𝐼𝐵

𝑟(x)}, for all xX 

𝐹𝐶
𝑙(x)=min{𝐹𝐴

𝑙(x),𝐹𝐵
𝑙 (x)}, 𝐹𝐶

𝑟(x)=min{𝐹𝐴
𝑟(x),𝐹𝐵

𝑟(x)}, for all xX 

Definition 3.8 The intersection of two IVIN sets A and B is defined as D=AB, where true-

membership, indeterminacy membership and falsity membership functions related n those of 

A and B by   

𝑇𝐷
𝑙 (x)=min{𝑇𝐴

𝑙(x),𝑇𝐵
𝑙 (x)}, 𝑇𝐷

𝑟(x)=min{𝑇𝐴
𝑟(x),𝑇𝐵

𝑟(x)}, for all xX 

𝐼𝐷
𝑙 (x)= max{𝐼𝐴

𝑙 (x),𝐼𝐵
𝑙 (x)}, 𝐼𝐷

𝑟 (x)= max{𝐼𝐴
𝑟(x),𝐼𝐵

𝑟(x)}, for all xX 

𝐹𝐷
𝑙 (x)= max{𝐹𝐴

𝑙(x),𝐹𝐵
𝑙 (x)}, 𝐹𝐷

𝑟(x)= max{𝐹𝐴
𝑟(x),𝐹𝐵

𝑟(x)}, for all xX 

Example 3.9Let A and B are two IVIN sets of U. A = {(<u1, [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]>), 

(<u2, [0.3, 0.5], [0.1, 0.3], [0.4, 0.8]>), (<u3, [0.4, 1], [0.2, 0.4], [0.4, 0.6]>)} and B = {(<u1, 

[0.6, 1], [0.0, 0.2], [0.3, 0.5]>), (<u2, [0.2, 0.6], [0.1, 0.3], [0.4, 0.8]>), (<u3, [0.2, 0.4], [0.4, 

0.8], [0.3, 0.5]>)} 
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Where U={u1, u2, u3} be the universe then AB 

={(<u1, [0.6, 0.1], [0.0, 0.2], [0.3, 0.5]>), (<u2, [0.3, 0.6], [0.1, 0.3], [0.4, 0.8]>), (<u3, [0.4, 

1], [0.2, 0.4], [0.3, 0.5]>)} 

Here for u1, min(
0.6+1

2
,
0+0.2

2
) = min(0.8, 0.1) = 0.1 0.5 

min(
0.6+1

2
,
0.3+0.5

2
) = min(0.8, 0.4) = 0.4  0.5 

min(
0.3+0.5

2
,
0+0.2

2
) = min(0.4, 0.1) = 0.1  0.5 

Similarly for u2 and u3 

So AB is also a IVIN set. 

AB={(<u1, [0.2, 0.4], [0.4, 0.6], [0.3, 0.5]>), (<u2, [0.2, 0.5], [0.1, 0.3], [0.4, 0.8]>), (<u3, 

[0.2, 0.4], [0.4, 0.8], [0.4, 0.6]>)} 

Here AB is also an IVIN set. 

Definition 3.10: Comparison matrix: The comparison matrix is a matrix whose rows are 

labeled by the object names of the universe such as u1, u2, ….un and the columns are labeled 

by the parameters e1, e2, ….,em. The entries are calculated by cij=a+b-c, where a is the integer 

calculated as low many times 
𝑇𝑢𝑖
𝑙 (𝑒𝑗)+𝑇𝑢𝑖

𝑟 (𝑒𝑗)

2
 exceeds or equal to 

𝑇𝑢𝑘
𝑙 (𝑒𝑗)+𝑇𝑢𝑘

𝑟 (𝑒𝑗)

2
 for uiuk, 

 ∀ 𝑢𝑘 ∈ 𝑈 {𝑤ℎ𝑒𝑟𝑒 𝑇𝑈𝑖(𝑒𝑗) =[𝑇𝑢𝑖
𝑙 (𝑒𝑗), 𝑇𝑢𝑖

𝑟 (𝑒𝑗)]} 

b is the integer calculated as how many times
𝐼𝑢𝑖
𝑙 (𝑒𝑗)+𝐼𝑢𝑖

𝑟 (𝑒𝑗)

2
 

exceeds or equal to 
𝐼𝑢𝑘
𝑙 (𝑒𝑗)+𝐼𝑢𝑘

𝑟 (𝑒𝑗)

2
 for uiuk, ∀ 𝑢𝑘 ∈ 𝑈 

{𝑤ℎ𝑒𝑟𝑒 𝐼𝑈𝑖(𝑒𝑗) =[𝐼𝑢𝑖
𝑙 (𝑒𝑗), 𝐼𝑢𝑖

𝑟 (𝑒𝑗)]} 
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c is the integer calculated as how many times
𝐹𝑢𝑖
𝑙 (𝑒𝑗)+𝐹𝑢𝑖

𝑟 (𝑒𝑗)

2
 exceeds or equal to 

𝐹𝑢𝑘
𝑙 (𝑒𝑗)+𝐹𝑢𝑘

𝑟 (𝑒𝑗)

2
 

for uiuk, ∀ 𝑢𝑘 ∈ 𝑈 

{𝑤ℎ𝑒𝑟𝑒 𝐹𝑈𝑖(𝑒𝑗) =[𝐹𝑢𝑖
𝑙 (𝑒𝑗) + 𝐹𝑢𝑖

𝑟 (𝑒𝑗)]}. 

4. An application of IVIN soft set in decision making problem. 

Let us consider the example 3.5. Then the tabular representation of the IVIN soft set is (F, A) 

is given by the following table. 

e1 expensive  e2 green surrounding e3 made of wooden e4 cheap 

[0.4, 0.6], [0.5, 0.7], 

[0.2, 0.4] 

[0.4, 0.6], [0.2, 0.4], 

[0.4, 0.6] 

[0.5, 0.9], [0.3, 0.5], 

[0.2, 0.4] 

[0.6, 1], [0, 0.2], [0.3, 

0.5] 

[0.3, 0.5], [0.5, 0.9], 

[0.1, 0.3] 

[0.5, 0.9], [0.3, 0.5], 

[0.2, 0.4] 

[0.4, 0.8], [0, 0.2], 

[0.1, 0.3] 

[0.2, 0.6], [0.1, 0.3], 

[0.4, 0.8] 

[0.5, 0.7], [0.1, 0.3], 

[0.2, 0.4] 

[0.7, 0.9], [0, 0.2], 

[0.1, 0.3] 

[0.4, 1], [0.1, 0.3], 

[0.4, 0.6] 

[0.2, 0.4], [0.4, 0.8], 

[0.3, 0.5] 

[0.5, 0.9], [0.2, 0.4], 

[0.1, 0.3] 

[0.5, 0.9], [0, 0.2], 

[0.2, 0.4] 

[0.3, 0.7], [0.1, 0.3], 

[0.4, 0.8] 

[0.2, 0.6], [0.6, 1], 

[0.4, 0.6] 

[0.6, 1], [0.1, 0.3], 

[0.2, 0.4] 

[0.6, 1], [0.2, 0.4], 

[0.3, 0.5] 

[0.4, 1], [0.2, 0.4], 

[0.1, 0.3] 

[0.2, 0.4], [0.4, 0.6], 

[0.4, 1] 

 

The aim is to find out the most suitable house with the choice parameter for X. The algorithm 

for most appropriate selection of an object will be as follows: 

1. Input the IVIN soft set (F, E) 

2. Input A, The choice of parameters of r X which is a subset of E. 

3. Consider the IVIN soft set (F, A) and write it in the tabulated form 

4. Compute the comparison matrix of the IVIN soft set (F, A) 
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5. Compute the score Si of ui∀ 𝑖 

6. Find Sk = max Si 

7. If k has more than one value then r may be chosen. 

:- Table 1 is how converted to Table 2 in the following way 

 

Table 2 

U e1 e2 e3 e4 

u1 (0.5, 0.6, 0.3) (0.5, 0.3, 0.5) (0.7, 0.4,0.3) (0.8,0.1,0.4) 

u2 (0.4, 0.7, 0.2) (0.7,0.4,0.3) (0.6,0.1,0.2) (0.4,0.2,0.6) 

u3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5) (0.3,0.6,0.4) 

u4 (0.7,0.3,0.2) (0.7,0.1,0.3) (0.5,0.2,0.6) (0.4,0.8,0.5) 

u5 (0.8,0.2,0.3) (0.8,0.3,0.4) (0.7,0.3,0.2) (0.3,0.5,0.7) 

  

The comparison matrix of the IVIN soft set (F,A) is represented by the following tabular form  

Table 3 

U e1 e2 e3 e4 

u1 1+3-4=0 0+3-4=-1 4+4-2=6 4+0-1=3 

u2 0+4-1=3 2+4-2=4 4+0-1=3 3+1-3=1 

u3 2+1-4=-1 4+1-0=5 4+2-3=3 1+3-1=3 

u4 3+2-1=4 2+1-2=1 0+2-4=-2 3+4-2=5 

u5 4+1-4=1 4+3-3=4 4+3-1=6 1+2-4=-1 
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Table-4 

We calculate the score for each ui 

U Score Si 

u1 8 

u2 11 

u3 10 

u4 8 

u5 10 

 

Clearly the maximum score is 11. Hence the last decision for X is to select u2. 

5. Conclusions 

In this paper we study the notion of IVINset and IVINsoft set. We have also defined some 

operations on IVINsets. Finally we present an application of IVINsoft set in a decision 

making problem.  
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Abstract: In this work, we establish novel representations for the Gauss hypergeometric 

function in different limits, expanding the known methods for expressing and evaluating this 

function. These representations are derived using some basic important integrations. The 

obtained results extend classical identities and offer valuable insights into the structure and 

properties of the hypergeometric function, with potential implications for various areas of 

mathematical analysis, physics and engineering. Additionally, a few special examples have also 

been given. 
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Integration. 

 

1. INTRODUCTION  

The Gauss hypergeometric function plays a fundamental role in various branches of 

mathematics and physics, including differential equations, special functions, and applied 

sciences. We are motivated by recent advancements in integrals involving the product of two 

generalized hypergeometric functions, as well as double integrals involving generalized 

hypergeometric functions, as obtained by Basnet et al [1], [2]. In this work, we present novel 

integral representations for the Gauss hypergeometric function, derived using advanced 

techniques in integration. By bridging theoretical insights with computational efficiency, this 

study aims to enrich the existing framework of hypergeometric functions and contribute to their 

broader applicability in interdisciplinary research. 

    In 1812, Gauss systematically discussed the series [3] [4] [5] 

1 + 
𝑎.𝑏

𝑐

𝑥

1!
+ 

𝑎 ( 𝑎+1).𝑏(𝑏+1)

𝑐 (𝑐+1)

𝑥2

2!
+⋯                                                          (1.1) 
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The series (1.1) is denoted by   2F1 (a, b; c; x) or 2F1 [
𝑎, 𝑏
𝑐
; 𝑥] that is  

                                                        2F1 [
𝑎, 𝑏
𝑐
; 𝑥] =  ∑

(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  

𝑥𝑛

𝑛!
                                             (1.2) 

In this case, a and b are the numerator parameters, while c is the denominator parameter. For 

𝑐 ≠ 0,−1,−2,…  and if either a or b is a negative integer, the series in equation (1.2) will 

terminate The Gauss hypergeometric series (1.2) is [3] [4] [6] [5] 

i. converges if |𝑥| < 1, diverges if |𝑥| > 1, 

ii. when 𝑥 = 1, converges if Re(𝑐 − 𝑎 − 𝑏) > 0,  diverges if Re(𝑐 − 𝑎 − 𝑏) ≤ 0, 

iii. when 𝑥 = − 1, converges absolutely if Re(𝑐 − 𝑎 − 𝑏) > 0, converges but not 

absolutely if − 1 ≤ 𝑅𝑒(𝑐 − 𝑎 − 𝑏) > 0,  diverges if Re(𝑐 − 𝑎 − 𝑏) ≤ −1. 

The generalized hypergeometric function with 𝑝 numerator and 𝑞 denominator parameters is 

defined as [3] [4] [7] 

                                        pFq [
𝛼1, … , 𝛼𝑝
𝛽1, … , 𝛽𝑞

; 𝑥]  = ∑
(𝛼1)𝑛 …  (𝛼𝑝)𝑛

(𝛽1)𝑛 … (𝛽𝑞)𝑛 

∞
𝑛=0  

𝑥𝑛

𝑛!
 .                                  (1.3)     

Pochhammer symbol:  In series (1.2) and (1.3) where  (𝑎)𝑛  denotes the Pochhammer symbol 

with its usual representation    in terms of Gamma function defined by [3] [5] 

   (𝑎)𝑛 = ∏ (𝑎 + 𝑘 − 1), (𝑎)0 = 1, (1)𝑛 = 𝑛!
𝑛
𝑘=1 , (𝑎)𝑛 =

Γ(𝑎+𝑛)

Γ(𝑎)
  and 

   (𝑎)2𝑛 = 2
2𝑛 (

𝑎

2
)
𝑛
(
𝑎

2
 + 

1

2
)
𝑛
.                                                                                     (1.4) 

where 𝑛 is a non- negative integer. Pochhammer symbol was introduced by the German 

mathematician Leo Pochhammer (1841 – 1920). Hypergeometric function reduces to the gamma 

function, results are very important from the application point view.  

Gamma function: The Gamma function, denoted by Γ(x), exists for positive, negative, and 

complex values of 𝑥, except at  𝑥 =  0, −1,−2,−3, . ..  and it is defined by [3] 

             Γ(𝑥) =  ∫ 𝑒−𝑡
∞

0
𝑡𝑥−1 𝑑𝑡,    ℛ(𝑥) > 0 and 

Γ(𝑧)

Γ(𝑧− 𝑛)
= (−1)𝑛  

Γ(−𝑧+𝑛+1)

Γ(−𝑧+1)
.                 (1.5)                          
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Beta Function: Beta function of 𝑚 and 𝑛 is denoted by 𝐵(𝑚, 𝑛) and defined by [3] 

            𝐵(𝑚, 𝑛) =  ∫ 𝑥𝑚−1
1

0
(1 − 𝑥)𝑛−1 𝑑𝑥 =  

Γ(𝑚)Γ(𝑛) 

Γ(𝑚+𝑛)
,   ℛ(𝑚) > 0, ℛ(𝑛) > 0.            

2. SOME CLASSICAL SUMMATION FORMULAS AND IMPORTANT INTEGRALS:  

This section explores some fundamental summation formulas and important integrals, highlighting 

their mathematical significance and applications. 

2.1. Some important and applicable definite integrals are [8] 

          ∫ [(1 + 𝑡)𝑥−1 (1 −  𝑡)𝑦−1 + (1 − 𝑡)𝑥−1 (1 +  𝑡)𝑦−1]
1

0
 dx = 2𝑥+𝑦−1𝐵(𝑥, 𝑦) .        (2.1)     

         ∫ 𝑥𝑐−1
1

0
(1 −  𝑥)𝑑−1 (1 + 𝑏 𝑡)−𝑐−𝑑dx =  (1 + 𝑏)−𝑐𝐵(𝑐, 𝑑) .                                      (2.2)  

         ∫ (𝑡 − 𝑏)𝑥−1 (𝑎 −  𝑡)𝑦−1  = (𝑎 − 𝑏)𝑥+𝑦−1𝐵(𝑥, 𝑦)
𝑎

𝑏
 .                                                  (2.3)    

         ∫ (𝑥 − 𝑝)𝑐−1 (𝑞 −  𝑥)𝑑−1 (𝑥 −  𝑟)−𝑐−𝑑𝑑𝑥 =
(𝑞−𝑝)𝑐+𝑑−1

(𝑞−𝑟)𝑐(𝑝−𝑟)𝑑
𝐵(𝑐, 𝑑)

𝑞

𝑝
 .                          (2.4) 

         ∫
(1 + 𝑥)2𝑐−1 (1 −  𝑥)2𝑑−1(1 + 𝑥2)−𝑐−𝑑  

 
𝑑𝑥 =  2𝑐+𝑑−2𝐵(𝑐, 𝑑)

1

−1
 .                           (2.5) 

2.2. Classical summation formula: 

 There are many classical summation formulas in hypergeometric functions; however, we list  only a 

few  that are used in our main results [3] [7] [9].         

Gauss’s summation formula: If 𝑅𝑒(𝑐 −  𝑎 −  𝑏)  >  0, 2F1  [
𝑎, 𝑏
𝑐
; 1]  = 

Γ(𝑐) Γ(𝑐−𝑎−𝑏)

Γ(𝑐−𝑎)Γ(𝑐−𝑏)
 .   (2.6)   

Whipple’s summation formula: When 𝑎 +  𝑏 =  1 and 𝑒 +  𝑓 =  2𝑐 + 1, 

                               3F2 [
𝑎, 𝑏, 𝑐
𝑒, 𝑓 

; 1] =   
    𝜋  Γ(𝑒) Γ(𝑓)

22𝑐−1 Γ( 
𝑎+𝑒 

2
) Γ( 

𝑎+𝑓

2
) Γ( 

𝑏+𝑒

2
 )Γ(

𝑏+𝑓

2
 )
 .       (2.7)                                                                                             

3. MAIN RESULTS:  

 In this section, we shall establish some new integrals representations for the Gauss hypergeometric   

function in different limits of integrals are asserted in the following Theorem. 
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Theorem 3.1:  The following integrals representation for the Gauss hypergeometric function   hold 

true 

i. ∫ [(1 + 𝑥)𝑐−
3

2 (1 −  𝑥)𝑐−1 + (1 − 𝑥)𝑐−
3

2 (1 +  𝑥)𝑐−1]
1

0
×  

2F1 [
𝑎, 𝑏
𝑐
; (1 − 𝑥2)] 𝑑𝑥  

                      = 𝜋 √2   
Γ(𝑐)  Γ(𝑐− 

1

2
)Γ(𝑐− 

1

4
)Γ(𝑐+ 

1

4
)

Γ(2𝑐− 
1

2
) Γ(

𝑎+𝑐

2
 − 
1

8
)Γ(

𝑎+𝑐

2
+ 
1

8
)Γ(

𝑏+𝑐

2
 − 
1

8
)Γ(

𝑏+𝑐

2
 +  

1

8
)
  (𝑅𝑒(𝑐) > 1

2
).          (3.1) 

              𝑖𝑖.  ∫ [𝑥𝑐−1 (1 −  𝑥)𝑑−1 (1 + 𝑏𝑥)−𝑐−𝑑−𝑛 ]
1

0
 2F1 [

𝑎, 𝑏
𝑑
; 1 − 𝑥] 𝑑𝑥  

                =  
𝐵(𝑐,𝑑)

(1+𝑏)𝑐
Γ(𝑐+𝑑) Γ(𝑐+𝑑−𝑎−𝑏)  

   Γ(𝑐+𝑑−𝑎) Γ(𝑐+𝑑−𝑏) 
 ( 𝑥 > −1, 𝑅𝑒(𝑐), 𝑅𝑒(𝑑) > 0 and n =

 0, 1, 2, … ).    (3.2) 

Proof (i): Let left-hand side of (3.1) be I, we have  

    𝐼 =  ∫ [(1 + 𝑥)
𝑐−
3

2 (1 −  𝑥)𝑐−1 + (1 − 𝑥)𝑐−
3

2 (1 +  𝑥)𝑐−1]
1

0
  2F1 [

𝑎, 𝑏
𝑐
; (1 − 𝑥2)] 𝑑𝑥  

      = ∫ [(1 + 𝑥)𝑐−
3

2 (1 −  𝑥)𝑐−1 + (1 − 𝑥)𝑐−
3

2 (1 +  𝑥)𝑐−1]
1

0
∑

(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  

(1−𝑥2)𝑛

𝑛!
𝑑𝑥.  

 Changing the order of integration and summation, which is justified due to the uniform  convergence 

of the series and absolute convergent of the integral, we have   

      𝐼 =  ∑
(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛𝑛!

∞
𝑛=0  ∫ [(1 + 𝑥)

𝑐+𝑛−
1

2
−1 (1 −  𝑥)𝑐+𝑛−1 + (1 − 𝑥)𝑐+𝑛−

1

2
−1 (1 +

1

0

             𝑥)𝑐+𝑛−1] 𝑑𝑥                     

  Using integration (2.1), we obtain  

                           𝐼 = ∑
(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛𝑛!

∞
𝑛=0   22𝑐+2𝑛−

3

2    𝐵(𝑐 + 𝑛 −
1

2
, 𝑐 + 𝑛) 
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  Using (1.4) and after a little simplification, we obtain 

                          𝐼 = 22𝑐−3/2
Γ(𝑐) Γ(𝑐−1/2)  

   Γ(2𝑐−1/2)  
  3F2 [

𝑎, 𝑏, 𝑐 −
1

2

𝑐 −
1

4
, 𝑐 +

1

4

; 1]. 

 We now observe that the 3F2 can now be evaluated with the help of  Whipple’s formula (2.7) and we 

arrive at the right-hand side of (3.1). This completes the proof of the result (3.1) asserted in the 

theorem 3.1 (i).   

 Similarly, to prove theorem 3.1 (ii), we use integration (2.2) and Gauss’s summation theorem (2.6)  

and followed by a method similar to that used in theorem 3.1(i). 

Theorem 3.2: The following integrals representation for the Gauss hypergeometric function hold true 

for 𝑅𝑒(1 − 𝑎 − 𝑏 − 𝑑) > 0 and 𝑟 < 𝑝 < 𝑞 

i. ∫ (𝑥 − 𝑝)𝑐−1 (𝑞 −  𝑥)𝑑−1 
𝑞

𝑝
 2F1 [

𝑎, 𝑏
𝑐
; −

𝑥−𝑝

𝑞−𝑥
] 𝑑𝑥  

                 =  (𝑞 − 𝑝)𝑐+𝑑−1𝐵(𝑐, 𝑑) 
Γ(1− 𝑑) Γ(1−𝑎−𝑏−𝑑)  

   Γ(1−𝑎−𝑑) Γ(1−𝑏−𝑑) 
  .                                                       (3.3) 

ii.    ∫
(𝑥 − 𝑝)𝑐−1 (𝑞 −  𝑥)𝑑−1(𝑥 − 𝑟)−𝑐−𝑑  

 

𝑞

𝑝 2F1 [
𝑎, 𝑏
𝑐
; −

(𝑞−𝑟)(𝑥−𝑝)

(𝑝−𝑟)(𝑞−𝑥)
] 𝑑𝑥 .  

                 = 𝐵(𝑐, 𝑑) 
(𝑞−𝑝)𝑐+𝑑−1

(𝑞−𝑟)𝑐(𝑝−𝑟)𝑑
 
Γ(1− 𝑑) Γ(1−𝑑−𝑎−𝑏)  

   Γ(1−𝑑−𝑎) Γ(1−𝑑−𝑏) 
 .                                                          (3.4) 

Proof (i): Let left - hand side of (3.3) be I, we have 

            𝐼 = ∫ (𝑥 − 𝑝)𝑐−1 (𝑞 −  𝑥)𝑑−1 
𝑞

𝑝
 2F1 [

𝑎, 𝑏
𝑐
; −

𝑥−𝑝

𝑞−𝑥
] 𝑑𝑥  

        𝐼  = ∫ (𝑥 − 𝑝)𝑐−1 (𝑞 −  𝑥)𝑑−1 
𝑞

𝑝
  ∑

(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  

(−1)𝑛(𝑥−𝑝)𝑛

(𝑞−𝑥)𝑛 𝑛!
 𝑑𝑥 

  Changing the order of integration and summation, which is justified due to the uniform  convergence 

of the series and absolute convergent of the integral, we have                              

𝐼 =  ∑
(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

∞

𝑛=0

 
(−1)𝑛

 𝑛!
∫ (𝑥 − 𝑝)𝑐+𝑛−1 (𝑞 −  𝑥)𝑑−𝑛−1 
𝑞

𝑝

𝑑𝑥 
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Using integration (2.3), we obtain 

                            𝐼 =  (𝑞 −  𝑝)𝑐 + 𝑑 −1∑
(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  

(−1)𝑛

 𝑛!
  
Γ(𝑐+𝑛)Γ(𝑑−𝑛)

Γ(𝑐+𝑑)
. 

      Using (1.5) then (1.3), we obtain  

                            𝐼 =  (𝑞 −  𝑝)𝑐 + 𝑑 − 1 𝐵(𝑐 , 𝑑) 2F1 [
𝑎, 𝑏
1 − 𝑑

; 1]. 

     We now observe that the 2F1 can now be evaluated with the help of Gauss’s formula (2.6) and   

we arrive at the right-hand side of (3.3). This completes the proof of the result (3.3) asserted in the 

theorem 3.2 (i).   

          Similarly, to prove theorem 3.2 (ii), we use integration (2.4) and Gauss’s summation 

theorem (2.6)  and followed by a method similar to that used in theorem 3.2(i). 

  Theorem 3.3: The following integral representation for the Gauss hypergeometric function   holds 

true for  𝑅𝑒(1 − 𝑎 − 𝑏 − 𝑑) > 0, 𝑅𝑒(𝑐) > 0, 𝑅𝑒(𝑑) > 0 

    ∫ (1 + 𝑥)2𝑐−1 (1 −  𝑥)2𝑑−1(1 + 𝑥2)−𝑐−𝑑  
1

−1
 2F1 [

𝑎, 𝑏
𝑐
; (

1+𝑥

1−𝑥
)
2
] 𝑑𝑥 =  

                                                                              2𝑐+𝑑−2 𝐵(𝑐, 𝑑)
Γ(1− 𝑑) Γ(1−𝑎−𝑏−𝑑)  

   Γ(1−𝑎−𝑑) Γ(1−𝑏−𝑑) 
.          (3.5) 

Proof : Let left-hand side of (3.5) be I, we have 

            𝐼 = ∫ (1 + 𝑥)2𝑐−1 (1 −  𝑥)2𝑑−1(1 + 𝑥2)−𝑐−𝑑 
1

−1
 2F1[

𝑎, 𝑏
𝑐
; − (

1+𝑥

1−𝑥
)
2
] 𝑑𝑥 

           𝐼 = ∫ (1 + 𝑥)2𝑐−1 (1 −  𝑥)2𝑑−1(1 + 𝑥2)−𝑐−𝑑 
1

−1
∑

(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

∞
𝑛=0  

(1+𝑥)2𝑛(−1)𝑛

(1−𝑥)2𝑛 𝑛!
𝑑𝑥. 

 Changing the order of integration and summation, which is justified due to the uniform convergence 

of the series and absolute convergent of the integral, we have                                       

  𝐼 = ∑
(−1)𝑛(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛 𝑛!

∞

𝑛=0

 ∫ (1 + 𝑥)2𝑐+2𝑛−1 (1 −  𝑥)2𝑑−2𝑛−1
1

−1

(1 + 𝑥2)−𝑐−𝑑  𝑑𝑥. 
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Using the integration result (2.5), followed by applying (1.2) and (1.5), we observe that the 2F1 

function can now be evaluated using Gauss’s formula (2.6), leading us to the right-hand side of 

(3.5).This completes the proof of the result (3.5) asserted in the theorem 3.3.   

4. SPECIAL EXAMPLES 

In this section, we will mention a few special cases of our main findings. 

 4.1.  In (3.1), if we put , 𝑎 =
1

4
, 𝑏 =

3

4
  and 𝑐 =

3

2
, then we obtain the following result: 

         ∫ [√1 − 𝑥 + √1 + 𝑥]
1

0
 2F1 [

1

4
,
3

4
3

2

; (1 − 𝑥2)] 𝑑𝑥 = 
𝜋

√2
 .                                              (4.1) 

4.2.  In (3.2), if we put 𝑎 = 𝑏 = 1, 𝑐 = 2, 𝑑 = 3 , then we obtain the following result: 

                       ∫ [𝑥  (1 − 𝑥)2(1 + 𝑥)−5−𝑛 ]
1

0
 2F1 [

1, 1
1
; 1 − 𝑥]𝑑𝑥 =  

1

36
 .                        (4.2) 

4.3.  In (3.3), if we put 𝑐 =
3

2
 , 𝑎 = 𝑏 = 𝑑 =

1

4
  , then we obtain the following result: 

   ∫ (𝑥 − 𝑝)1/2 (𝑞 −  𝑥)− 3/4 
𝑞

𝑝
 2F1 [

1

4
 ,
1

4
 

3

2
 
; −

𝑥−𝑝

𝑞−𝑥
] 𝑑𝑥 =

2

3√𝜋
 (𝑞 − 𝑝)3/4 Γ2 (

1

4
).               (4.3) 

4.4.  In (3.4), if we put 𝑐 =
5

4
 , 𝑎 = 𝑏 = 𝑑 =

1

4
  , then we obtain the following result: 

 ∫ (𝑥 − 𝑝)
1

4 (𝑞 −  𝑥)
−3

4 (𝑥 − 𝑟)
−3

2  
 

𝑞

𝑝 2F1 [

1

4
,
1

4
5

4

; −
(𝑞−𝑟)(𝑥−𝑝)

(𝑝−𝑟)(𝑞−𝑥)
] 𝑑𝑥 = 

1

√2𝜋 
 √𝑞−𝑝

(𝑞−𝑟)5/4(𝑝−𝑟)1/4
 Γ2 (

1

4
).(4.4)              

4.5.  In (3.5), if we put 𝑐 =
5

4
 , 𝑎 = 𝑏 = 𝑑 =

1

4
  , then we obtain the following result: 

                   ∫ (1 + 𝑥)
3

2 (1 −  𝑥)
−1

2 (1 + 𝑥2)
−3

2  
1

−1
 2F1 [

1

4
,
1

4
5

4

; (
1+𝑥

1−𝑥
)
2
] 𝑑𝑥 =  

1

2√𝜋
Γ2 (

1

4
).        (4.5) 
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5.  CONCLUSION: 

In conclusion, this study presents three new theorems providing integral representations for the 

Gauss hypergeometric function, extending its theoretical scope and potential applications. Each 

theorem is accompanied by special cases, which illustrate specific instances of these results. These 

findings not only enhance the understanding of hypergeometric functions but also open pathways 

for their application in fields such as mathematical physics and engineering. The work offers both 

theoretical insights and practical tools, laying a foundation for further research in this area. 
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1. Introduction 

From historical point of view it is true fact that the modern age is the age of artificial 

intelligence(AI). In the modern age, science and technology significantly deal with intricate 

phenomena and processes for which there is inadequate information. In such kind of situations, 

mathematical models are created for dealing with different types of systems that have uncertain 

and imprecise components. Many of these models, like Fuzzy sets, soft sets, neutrosophic sets, 

intuitionistic fuzzy Sets, Fermatean fuzzy sets, Pythagorean fuzzy sets, multi Pythagorean 

fuzzy sets and many more sets are built on the extensions of standard set theory. In this paper 

we cover the core features of a Multi Fermatean Fuzzy Lie sub algebra of Lie algebra.  
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Most probably numerous domains along with signal processing, artificial intelligence, multi 

agent systems, computer networks, robotics, genetic algorithms, expert systems, neural 

networks, decision making, medical diagnosis and automata theory shall be benefited with the 

acquired outcomes. The idea of Lie algebra was first introduced by Sophus Lie (1842–1899) 

in an effort to categorise certain smooth subgroups of general linear groups [8]. Lie algebras, 

so named because they were invented by Sophus Lie, are a specific instance of general linear 

algebra. Following the introduction of this theory, Lie groups were used in mathematics and 

physics to categorise smooth subgroups. In [ [1],[11],[12],[17],[18], [19] ], Lie sub algebras 

and their properties were created and explored in more detail. L.A. Zadeh [10] proposed the 

concept of fuzzy set (FS) in situations that are vague, imprecise and uncertain. As a 

generalisation of fuzzy set, K. Atanassov [9] created intuitionistic fuzzy set (IFS) in 1986. His 

theory thereafter became widely acknowledged as an essential resource in the fields of science, 

technology, engineering, medicine, etc. In 1995, neutrosophic set (in short,NS) was introduced 

by F. Smarandache [4] as a generalization of not only intuitionistic fuzzy set but also of 

inconsistent intuitionistic fuzzy set, Pythagorean fuzzy set, Farmatean fuzzy set, spherical 

fuzzy set, n-Hyperspherical fuzzy set and so on. In order to create model for vague and 

imprecise information, the model of Fermatean fuzzy sets (FFS) was introduced by Senapati 

and Yager [20] which is someway different from IFS model since it involves the condition 0≤ 

T 3 +F3 ≤1, where T and F stand for membership and non-membership function respectably. In 

decision making problems, Fermatean fuzzy set model (FFS model) has significant application 

proposed by Zamana, F. Ghania, A. Khana, S. Abdullaha and F. Khan [13]. The application 

range of solving real life problems such as decision making problems in FFS model is popularly 

increasing than that of the IFS model because number of pairs satisfying the condition 0≤ T 3 

+F3 ≤1 is higher than that of the condition 0 ≤ T +F ≤1. Smarandache [3] subsequently proposed 

the model of multi Fermatean Fuzzy set which is the genralization of Fermatean Fuzzy set 

model.                                                                                                                                                                                                                        

The present paper is organized in the following manner: Section 1 represents the introduction 

and literature review of neutrosophic logic.  
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Section 2 focuses into common definitions and preliminaries. Section 3 describes the concept 

of Multi Fermatean Fuzzy Lie sub algebras and Multi Fermatean Fuzzy Lie ideals of Lie 

algebra. Some of their fundamental properties and operations like intersection and generalized 

cartesian product are investigated. Moreover, the relationship between Multi Fermatean fuzzy 

Lie sub algebras and Multi Fermatean fuzzy Lie ideals are also established. In section 4, we 

investigate the images and the inverse images of Multi Fermatean fuzzy Lie sub algebras and 

Multi Fermatean fuzzy Lie ideals under Lie homomorphisms. In section 5, we give the 

conclusion of the newly defined concept of Multi Fermatean fuzzy Lie sub algebras and Multi 

Fermatean fuzzy Lie ideals.  

2. Prelimineries 

This section consists of some common notations and definitions which have been involved in 

the course of the paper. A Lie algebra is a vector space  L over the field F(F = R or C) on which 

 L × L→ L defined by (γ, µ)=[γ, µ] for all γ, µ L where [γ, µ] is called Lie Bracket satisfying 

the following conditions: (1) [γ, µ] is bilinear (2) [γ, γ]=0, for all γ ∈ L   (3) [[γ, µ], λ]+[[µ, λ], 

γ]+[[λ, γ], µ]=0, for all γ, µ, λ  L  (This is called Jacobi identity).  

Throughout the paper L will denote Lie algebra and also we note that the operation Lie bracket 

[.,.] is neither associative nor commutative i.e,[[γ, µ], λ]  [[µ, λ],γ] and [γ, µ]  [µ, γ]. But the 

operation Lie bracket [.,.] is anti-commutative i.e. [γ, µ] = -[µ, γ]. A subspace H of L is called 

a Lie sub algebra if it is closed under [. , .]. A subspace I of L is called a Lie ideal if [I, L] ⊂ I. 

It is always true that every Lie ideal is Lie sub algebra.  

Definition 2.1. [10] Let U be a Universe of discourse. Then the fuzzy set (briefly, FS) on U is 

described as F= {(x, µ(x)): x∈X, where, µ(x) ∈ [0,1], denotes the degree of membership of 

x∈X}.  

Definition 2.2. [9] Let U be a Universe of discourse. Then the Intuitonistic fuzzy set on U is 

described as F= {(x, µ(x), ν(x)): x∈X, where, µ(x), ν(x) ∈ [0,1], indicating the degrees of 

membership and non-membership respectively such that 0 ≤µA(x)+νA(x)≤1}.  
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Definition 2.3. [20] Let U be a Universe of discourse. Then the Fermatean fuzzy set on U is 

described as F= {(x, µ(x), ν(x)): x∈X, where, µ(x), ν(x) ∈ [0,1], indicating the degrees of 

membership and non-membership respectively satisfying 0 ≤ (µF (x))3+ (νF (x))3 ≤1}.  

Definition 2.4. [4] Let X be a Universe of discourse. Then the neutrosophic set is defined by                        

N= {(x, τ (x), λ(x), η(x)), x∈X, where, τ , λ, η ∈ [0,1], indicating the degrees of truth, 

indeterminacy and falsehood respectively that satisfy 0 ≤ inf(τ ) + inf(λ)+ inf(η) ≤ sup(τ ) + 

sup(λ)+sup(η) ≤3}.  

Definition 2.5. [3] Let X be a universe of discourse. Then, a Multi Fermatean Fuzzy set 

(shortly, multi PFS) on X is defined by M= {(x, x(T1,T2,...,Tp; F1,F2,...,Fs)): x∈X, where p and 

s are integers ≥ 3 with p+s = n ≥3, and at least one of p and s is ≥2, in order to ensure the 

existence of multiplicity of at least one Fermatean component: truth or falsehood; all subsets 

T1,T2,...,Tp; F1,F2,...,Fs ⊆ [0,1]; 0 ≤ (Ti)
3+ (F k)

3 ≤ 1, for all i=1,2,3,.....,p and k=1,2,3,....,s.  

3. Properties of Multi Fermatean fuzzy Lie algebra 

In this section, we first define Fermatean fuzzy Lie sub algebras and Fermatean fuzzy Lie ideals 

and then the notion of Multi Fermatean fuzzy Lie sub algebras and Multi Fermatean fuzzy Lie 

ideals are initiated. Some characterizations, counter examples, and basic properties are also 

investigated.  

Definition 3.1. A Fermatean Fuzzy set (briefly, PFS) W= (τ, η) on L is said to be Fermatean 

Fuzzy subalgebra if, ∀ γ,µ ∈L; ∀c∈ F, the following assumptions hold good:                                                                    

(1) τW(γ+µ) ≥ Min{τW(γ),τW (µ)}, ηW(γ+µ) ≤ Max{ηW(γ), ηW(µ)}                                                                       

(2) τW(cγ) ≥ τW(γ), ηW(cγ) ≤ ηW(γ)                                                                                                                               

(3) τW[γ,µ] ≥ Min{τW(γ),τW (µ)}, ηW[γ,µ] ≤ Max{ηW(γ), ηW(µ)}.  

Definition 3.2. A Fermatean Fuzzy set (briefly,PFS) W= (τ, η) on L is said to be Fermatean 

Fuzzy Lie ideal if, ∀ γ,µ∈L; ∀c∈ F, the conditions (1) and (2) of definition (3.1) and the 

condition: τW([γ,µ]) ≥ τW(γ), ηW([γ,µ]) ≤ ηW(γ), holds good.  
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Definition 3.3. Let Nl ={1,2,....,l}, Nn ={1,2,....,n} and L be a Lie Algebra of vectors over the 

field F. A Multi Fermatean Fuzzy set W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) on L is said to be 

Multi Fermatean Fuzzy Lie sub algebra over L if, ∀ γ,η ∈L; ∀ i∈Nl ,∀ k∈Nn, ∀c∈ F, the 

following assumptions hold good: 

 (1) 𝜏𝑊
𝑖 (γ+µ) ≥ Min{ 𝜏𝑊

𝑖 (γ),τi
W(µ)}, 

𝑊
𝑘 (γ+µ) ≤ Max{ 

𝑊
𝑘 (γ), 

𝑊
𝑘 (µ)}                                                                      

(2) 𝜏𝑊
𝑖 (cγ) ≥ 𝜏𝑊

𝑖 (γ), 
𝑊
𝑘 (cγ) ≤ 

𝑊
𝑘 (γ)                                                                                                            

(3) 𝜏𝑊
𝑖 [γ,µ] ≥ Min{𝜏𝑊

𝑖  (γ), 𝜏𝑊
𝑖  (µ)}, 

𝑊
𝑘 [γ,µ] ≤ Max{ 

𝑊
𝑘 (γ), 

𝑊
𝑘 (µ)}  

Definition 3.4. Let Nl={1,2,....,l}, Nn={1,2,....,n} and L be a Lie Algebra of vectors over the 

field F. A Multi Fermatean Fuzzy set W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) on L is said to be 

Multi Fermatean Fuzzy Lie ideal if,∀ γ,η ∈L; ∀ i∈Nl ,∀ k∈Nn, ∀c∈ F, the conditions (1)-(2) of 

definition (3.3) along with the following conditions are satisfied: ∀ γ,η ∈L, (4) 𝜏𝑊
𝑖 [γ,µ] ≥ 𝜏𝑊

𝑖  

(γ), 
𝑊
𝑘  [γ,µ] ≤ 

𝑊
𝑘  (γ). It follows from condition (2) that (5) 𝜏𝑊

𝑖  (0) ≥ 𝜏𝑊
𝑖  (γ), 

𝑊
𝑘 (0) ≤ 

𝑊
𝑘 (γ) 

(6) 𝜏𝑊
𝑖  (-γ) ≥ 𝜏𝑊

𝑖  (γ), 
𝑊
𝑘 (-γ) ≤ 

𝑊
𝑘 (γ). 

Theorem 3.5. Let M=(𝜏𝑀
1  , 𝜏𝑀

2 ,...,𝜏𝑀
𝑙 ; 

𝑀
1  ,

𝑀
2 ,...,

𝑀
𝑛 ) be a Multi Fermatean Fuzzy Lie ideal 

over L and let Nl={1,2,....,l}, Nn={1,2,....,n}, then 𝜏𝑀
𝑖 (0)= Sup{𝜏𝑀

𝑖 (γ): γ∈L} and 
𝑀
𝑘  (0)= 

Inf{
𝑀
𝑘  (γ): γ∈L},∀ i∈Nl ,∀ k∈Nn.  

Proof. From condition (5) of definition (3.4), we have, 𝜏𝑀
𝑖 (0) ≥ 𝜏𝑀

𝑖 (γ)...........(1), 
𝑀
𝑘 (0) ≤ 


𝑀
𝑘 (γ).............(2) As γ runs over L, the results follow just taking supremum on both sides of 

above inequality (1) and infimum on (2).  

Theorem 3.6. Let M = (L, {𝜏𝑀
𝑖 }𝑖=1
𝑖 , {

𝑀
𝑘 }𝑘=1
𝑛 ) be a Multi Fermatean fuzzy Lie ideal over L. 

Then for each ψ, σ ∈[0,1] satisfying 𝜏𝑀
𝑖  (0) ≥ ψ, 

𝑀
𝑘  (0) ≤ σ and 0 ≤ ψ+ σ ≤ 1, the (ψ, σ)-level 

subset 𝐿𝑀
(,)

 is a Multi Fermatean fuzzy Lie ideal of L.  

Proof. Straight forward from definition. 

 

 

 

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

27 
 

 

Theorem 3.7. If δ is a fixed element of L and M = (L, {𝜏𝑀
𝑖 }𝑖=1
𝑙 , {

𝑀
𝑘 }𝑘=1
𝑛 ) is a Multi Fermatean 

Fuzzy Lie ideal of L. Then the set defined by Mδ = {γ∈ L: 𝜏𝑀
𝑖  (γ) ≥ 𝜏𝑀

𝑖  (δ), 
𝑀
𝑘  (γ) ≤ 

𝑀
𝑘  (δ)} is 

a Multi Fermatean Fuzzy Lie ideal of L. 

Proof. Suppose that γ,µ ∈ Mδ , i∈Nl , k∈Nn. Then ∀γ,µ ∈ Mδ , ∀ i∈Nl , ∀ k∈Nn                                 

𝜏𝑀
𝑖 (γ+µ) ≥ Min{𝜏𝑀

𝑖  (γ), 𝜏𝑀
𝑖  (µ)}≥ 𝜏𝑀

𝑖  (δ);                                                                                                   


𝑀
𝑘  (γ+µ) ≤ Max{

𝑀
𝑘 (γ), 

𝑀
𝑘 (µ)} ≤

𝑀
𝑘 (δ).                                                                                                      

This implies that γ+µ ∈ Mδ.                                                                                                                      

Now, ∀γ ∈ Mδ,∀ i∈Nl ,∀ k∈Nn, ∀c∈ F,                                                                                                       

𝜏𝑀
𝑖  (cγ) ≥ 𝜏𝑀

𝑖  (γ)≥ 𝜏𝑀
𝑖  (δ);                                                                                                                                


𝑀
𝑘 (cγ) ≤ 

𝑀
𝑘 (γ) ≤ 

𝑀
𝑘 (δ) ⇒ cγ ∈Mδ.                                                                                                              

Also for every γ ∈ Mδ and for every µ ∈ Mδ ,∀ i∈Nl , ∀ k∈Nn,                                                                       

𝜏𝑀
𝑖  [γ,µ] ≥ Min{𝜏𝑀

𝑖 (γ),𝜏𝑀
𝑖 (µ)}≥ 𝜏𝑀

𝑖 (δ); 
𝑀
𝑘 [γ,µ] ≤ Max{

𝑀
𝑘 (γ), 

𝑀
𝑘 (µ)} ≤ 

𝑀
𝑘 (δ), which shows 

that [γ,η] ∈ Mδ . Hence, Mδ is a Multi Fermatean Fuzzy Lie ideal of L.  

Theorem 3.8. If M = (L, {𝜏𝑀
𝑖 }𝑖=1
𝑙 , {

𝑀
𝑘 }𝑘=1
𝑛 ) is a Multi Fermatean Fuzzy Lie ideal of L. Then 

the set defined by M0 = {γ∈ L: 𝜏𝑀
𝑖  (γ) ≥ 𝜏𝑀

𝑖 (0), 
𝑀
𝑘  (γ) ≤ 

𝑀
𝑘 (0), ∀ i∈Nl , k∈Nn} is a Multi 

Fermatean Fuzzy Lie ideal of L.  

Proof. Straight forward.  

Theorem 3.9. Let W = (L, {𝜏𝑊
𝑖 }𝑖=1
𝑙 , {

𝑊
𝑘 }𝑘=1

𝑛 ) be a Multi Fermatean Fuzzy Lie sub algebra of 

a Lie algebra L and R ⊆ L × L be a binary relation on L defined by R ={(γ,µ) ∈ L × L | 𝜏𝑊
𝑖  (γ-

µ) =𝜏𝑊
𝑖 (0), 

𝑊
𝑘  (γ-µ) =

𝑊
𝑘 (0), γ,µ ∈ L, i∈Nl , k∈Nn}, then R is a congruence relation on L.  

Proof. First of all, we need to prove that the relation R is equivalence relation on L.                               

Now (i) Reflexivity: Since ∀ γ ∈ L, 𝜏𝑊
𝑖 (γ-γ) =𝜏𝑊

𝑖 (0), 
𝑊
𝑘  (γ-γ) =

𝑊
𝑘 (0), thus, (γ,γ) ∈ R, ∀ γ ∈ 

L,∀ i∈Nl , k∈Nn, and consequently R is reflexive relation on L.  
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(ii) Symmetric: Let, (γ,µ) ∈ R. Then 𝜏𝑊
𝑖  (γ-µ) = 𝜏𝑊

𝑖 (0) ⇒ 𝜏𝑊
𝑖 (-(µ-γ)) ≥ 𝜏𝑊

𝑖  (µ-γ) = 𝜏𝑊
𝑖 (0), 


𝑊
𝑘 (γ-µ) =

𝑊
𝑘 (0), ⇒ 

𝑊
𝑘 (-(µ-γ)) ≤ 

𝑊
𝑘 ((µ-γ)) = 

𝑊
𝑘 (0), Thus, (µ,γ) ∈ R, ∀ γ, µ ∈ L,∀ i∈Nl , 

k∈Nn, so that R is symmetric relation on L.  

(iii) Transitive: Let, (γ,µ), (µ,σ)∈ R. Then 𝜏𝑊
𝑖 (γ-µ) = 𝜏𝑊

𝑖 (0), 𝜏𝑊
𝑖  (µ-σ) = 𝜏𝑊

𝑖 (0) 
𝑊
𝑘 (γ-µ) = 


𝑊
𝑘 (0), 

𝑊
𝑘 (µ-σ) = 

𝑊
𝑘 (0) From which we have, 𝜏𝑊

𝑖 (γ-σ)= 𝜏𝑊
𝑖 {(γ-µ)+ (µ-σ)} ≥ Min {𝜏𝑊

𝑖 (γ-

µ),𝜏𝑊
𝑖 (µ-σ)} = 𝜏𝑊

𝑖 (0), 
𝑊
𝑘 (γ-σ)= 

𝑊
𝑘 {(γ-µ)+ (µ-σ)} ≤ Max {

𝑊
𝑘 (γ-µ),

𝑊
𝑘 (µ-σ)} = 

𝑊
𝑘 (0). 

Hence, (γ,σ) ∈L,∀ i∈Nl , k∈Nn and consequently, R is transitive relation on L. Hence, R is an 

equivalence relation on L.  

We now verify that R is an congruence relation on L and for that let us take (γ,µ), (µ,σ) ∈ R.               

Then 𝜏𝑊
𝑖  (γ-µ) = 𝜏𝑊

𝑖  (0), 𝜏𝑊
𝑖 (µ-σ) = 𝜏𝑊

𝑖 (0), 
𝑊
𝑘 (γ-µ) = 

𝑊
𝑘 (0), 

𝑊
𝑘 (µ-σ) = 

𝑊
𝑘 (0).                                     

Now if γ1, γ2, µ1, µ2 ∈ R, then we must have,                                                                                      

𝜏𝑊
𝑖 {(γ1+γ2)- (µ1+ µ2)} = 𝜏𝑊

𝑖 {(γ1-µ1)+ (γ2-µ2)} ≥ Min {𝜏𝑊
𝑖 (γ1-µ1),𝜏𝑊

𝑖 (γ2-µ2)} = 𝜏𝑊
𝑖 (0),                 


𝑊
𝑘 {(γ1+γ2)- (µ1+ µ2)} =

𝑊
𝑘 {(γ1-µ1)+ (γ2-µ2)} ≤ Max {

𝑊
𝑘 (γ1-µ1),𝑊

𝑘 (γ2-µ2)} = 
𝑊
𝑘 (0),               

𝜏𝑊
𝑖 (cγ1-cµ1) =𝜏𝑊

𝑖 {c(γ1-µ1)}≥ 𝜏𝑊
𝑖 (γ1-µ1) =𝜏𝑊

𝑖 (0),                                                                                        


𝑊
𝑘  (cγ1-cµ1) =

𝑊
𝑘 {c(γ1-µ1)}≥ 

𝑊
𝑘 (γ1-µ1) =

𝑊
𝑘 (0),                                                                            

𝜏𝑊
𝑖 {[γ1,γ2]- [µ1, µ2]} = 𝜏𝑊

𝑖 [(γ1-µ1), (γ2-µ2)] ≥ Min {𝜏𝑊
𝑖 (γ1-µ1),𝜏𝑊

𝑖 (γ2-µ2)} = 𝜏𝑊
𝑖 (0),                     


𝑊
𝑘 {[γ1+γ2]- [µ1+ µ2]} =

𝑊
𝑘 [(γ1-µ1), (γ2-µ2)] ≤ Max {

𝑊
𝑘 (γ1-µ1),𝑊

𝑘 (γ2-µ2)} = 
𝑊
𝑘  (0),                       

Thus, (γ1+γ2) R (µ1+ µ2) , cγ1Rcµ1 and [γ1,γ2]R[µ1, µ2].                                                                              

Hence, R is a congruence relation on L.  

Theorem 3.10. Every Multi Fermatean Fuzzy Lie ideal is Multi Fermatean Fuzzy Lie sub 

algebra. Proof. Straight forward from definition.  

The converse of the above theorem (3.10) is not true which can be seen from the following 

example:  
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Example 3.11. Suppose that F=R, the set of real numbers and L = {(α,β,γ): α,β,γ∈R} be the 

Lie algebra. Let us define the mapping L×L→L by [u,v]=u×v+v, where × denotes the vector 

product (or cross product). Consider the Multi Fermatean fuzzy set W= (𝜏𝑊
1  , 𝜏𝑊

2 ,..., 𝜏𝑊
4 ; 

𝑊
1  

,
𝑊
2 ,...,

𝑊
5 ) : L→ [0,1]×[0,1]×[0,1]×[0,1]×[0,1]×[0,1]×[0,1]×[0,1]×[0,1] described by 

 𝜏𝑊
𝑖  (α,β,γ)= {

0.9

𝑖
, 𝑖𝑓 𝛼 = 𝛽 = 𝛾 = 0

0.5

𝑖
, 𝑖𝑓 𝛼 ≠ 0, 𝛽 = 𝛾 = 0

0,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , for i=1,2,3,4.  


𝑊
𝑘  (α,β,γ)= {

0, 𝑖𝑓 𝛼 = 𝛽 = 𝛾 = 0
0.7

𝑘
, 𝑖𝑓 𝛼 ≠ 0, 𝛽 = 𝛾 = 0

1

𝑘
,              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, for k=1,2,3,4,5.  

Then it is easy to verify that W is a Multi Fermatean Fuzzy Lie sub algebra of L but it is not 

Multi Fermatean Fuzzy Lie ideal of L because for all i=1,2,3,4, 𝜏𝑊
𝑖  [(2,0,0),(i,-i,i)]= 𝜏𝑊

𝑖 (i,-3i,-

i)=0< 𝜏𝑊
𝑖  (2,0,0).  

Theorem 3.12. Let Nl={1,2,....,l}, Nn={1,2,....,n} and L be a Lie Algebra of vectors over the 

field F. The necessary and sufficient condition for a Multi Fermatean fuzzy set W = (𝜏𝑊
1  , 

𝜏𝑊
2 ,...,𝜏𝑊

𝑙 ; 
𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) to be a Multi Fermatean fuzzy Lie sub algebra over L is that, 

∀r∈[0,1], non-empty upper      r-level cut Ur(𝜏𝑊
𝑖 ) = {γ ∈ L : 𝜏𝑊

𝑖  (γ) ≥ r, ∀ i∈Nl} and non-empty 

lower r-level cut Vr(𝑊
𝑘 ) ={γ ∈L:             

𝑊
𝑘  (γ) ≤ r, ∀ k∈Nn} are Lie sub algebra over L.  

Proof. Suppose that W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) is a Multi Fermatean Fuzzy Lie sub 

algebra over L and r∈[0,1] is such that Ur(𝜏𝑊
𝑖 )  φ. Let γ,η ∈ Ur(𝜏𝑊

𝑖 ). Then ∀ γ,η∈L; ∀ i∈Nl 

,∀ k∈Nn, ∀c∈ F, 𝜏𝑊
𝑖  (γ+µ) ≥ Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)}≥r,                                                                                                              


𝑊
𝑘  (γ+µ) ≤ Max{

𝑊
𝑘 (γ), 

𝑊
𝑘 (µ)} ≤ r                                                                                                      

𝜏𝑊
𝑖  (cγ) ≥ 𝜏𝑊

𝑖 (γ)≥r , 
𝑊
𝑘 (cγ) ≤ 

𝑊
𝑘 (γ) ≤ r,                                                                                                  

𝜏𝑊
𝑖 [γ,µ] ≥ Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)}≥ r,                                                                                                          


𝑊
𝑘 [γ,µ] ≤ Max{

𝑊
𝑘 (γ), 

𝑊
𝑘 (µ)} ≤ r.     
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Thus, γ+µ,cγ, [γ,µ] ∈ Ur(𝜏𝑊
𝑖 ), γ+µ,cγ, [γ,µ] ∈ Vr(𝑊

𝑘 ). Hence, Ur(𝜏𝑊
𝑖 ) and Vr(𝑊

𝑘 ) constitute 

Lie sub algebra over L.                                                                                                                                   

Conversely, suppose that ∀  i∈Nl and ∀ r ∈ [0,1], Ur(𝜏𝑊
𝑖 )  φ is a Lie sub algebra over L and 

if possible suppose that 𝜏𝑊
𝑖  (γ+µ)  Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)} for some γ,µ ∈ L. If we choose r0= 

1

2
 

(𝜏𝑊
𝑖 (γ+µ) + Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)}), the by properties of inequality we must have, 𝜏𝑊

𝑖  (γ+µ) < 

r0<Min{𝜏𝑊
𝑖 (γ),𝜏𝑊

𝑖 (µ)}. This implies that, γ+µ  Ur(𝜏𝑊
𝑖 ), γ,µ ∈ Ur(𝜏𝑊

𝑖 ), which is a 

contradiction. Hence 𝜏𝑊
𝑖 (γ+µ) ≥ Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)}, ∀ γ,µ ∈ L. In a similar manner we can 

prove that 𝜏𝑊
𝑖 (cγ) ≥ 𝜏𝑊

𝑖 (γ) and 𝜏𝑊
𝑖 [γ,µ] ≥ Min{𝜏𝑊

𝑖 (γ),𝜏𝑊
𝑖 (µ)}, ∀c∈ F, ∀ i∈Nl . The proof is 

similar for the case Vr(𝑊
𝑘 ). This completes the proof.  

Theorem 3.13. Let Nl={1,2,....,l}, Nn={1,2,....,n} and L be a Lie Algebra of vectors over the 

field F. If V = (𝜏𝑉
1  , 𝜏𝑉

2,...,𝜏𝑉
𝑙 ; 

𝑉
1  ,

𝑉
2 ,...,

𝑉
𝑛) and W = (𝜏𝑊

1  , 𝜏𝑊
2 ,...,𝜏𝑊

𝑙 ; 
𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) are two 

Multi Fermatean Fuzzy Lie sub algebra over L, then their intersection V∩W= H = (𝜏𝐻
1  , 

𝜏𝐻
2 ,...,𝜏𝐻

𝑙 ; 
𝐻
1  ,

𝐻
2 ,...,

𝐻
𝑛 ) is also Multi Fermatean Fuzzy Lie sub algebra over L.  

Proof. Suppose that γ,µ ∈ L be arbitrary. Then ∀ i∈Nl ,∀ k∈Nn, ∀c∈ F, we have,                                    

𝜏𝐻
𝑖  (γ+µ) = Min{𝜏𝑉

𝑖  (γ+µ), 𝜏𝑊
𝑖  (γ+µ)}                                                                                                          

≥ Min{Min{𝜏𝑉
𝑖 (γ),𝜏𝑉

𝑖 (µ)},Min{𝜏𝑊
𝑖  (γ),𝜏𝑊

𝑖 (µ)}}                                                                      

=Min{Min{𝜏𝑉
𝑖  (γ),𝜏𝑊

𝑖  (γ)},Min{𝜏𝑉
𝑖 (µ),𝜏𝑊

𝑖 (µ)}}                                                                        

=Min{𝜏𝐻
𝑖 (γ),𝜏𝐻

𝑖 (µ)}                                                                                                                                              


𝐻
𝑘  (γ+µ) = Max{

𝑉
𝑘  (γ+µ), 

𝑊
𝑘  (γ+µ)}                                                                                                       

≤ Max{Max{
𝑉
𝑘 (γ),

𝑉
𝑘 (µ)},Max{

𝑊
𝑘 (γ),

𝑊
𝑘 (µ)}}                                                                    

=Max{Max{
𝑉
𝑘  (γ), 

𝑊
𝑘  (γ)},Max{

𝑉
𝑘  (µ), 

𝑊
𝑘  (µ)}}                                                                 

=Max{
𝐻
𝑘 (γ),

𝐻
𝑘 (µ)}                                                                                                                                            

𝜏𝐻
𝑖  (cγ) = Min{𝜏𝑉

𝑖  (cγ), 𝜏𝑊
𝑖 (cγ)}≥ {Min{𝜏𝑉

𝑖  (γ), 𝜏𝑊
𝑖 (γ)} = 𝜏𝐻

𝑖  (γ)                                                                


𝐻
𝑘  (cγ) = Max{

𝑉
𝑘 (cγ), 

𝑊
𝑘  (cγ)} ≤ {Max{

𝑉
𝑘  (γ), 

𝑊
𝑘  (γ)} =

𝐻
𝑘  (γ)                                                        

𝜏𝐻
𝑖  [γ,µ] = Min{𝜏𝑉

𝑖  [γ,µ], 𝜏𝑊
𝑖  [γ,µ]}                                                                                                                                      

≥ Min {Min{𝜏𝑉
𝑖  (γ),𝜏𝑉

𝑖 (µ)}, Min{𝜏𝑊
𝑖  (γ),𝜏𝑊

𝑖 (µ)}}                                                                                                      

= Min {Min{𝜏𝑉
𝑖  (γ), 𝜏𝑊

𝑖  (γ)},Min {𝜏𝑉
𝑖 (µ), 𝜏𝑊

𝑖  (µ)}}                                                                                                          

= Min {𝜏𝐻
𝑖  (γ),𝜏𝐻

𝑖 (µ)}                                                                                                                                                             
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𝐻
𝑘  [γ, µ] = Max{ 

𝑉
𝑘  [γ, µ], 

𝑊
𝑘  [γ, µ]} ≤ Max {Max{

𝑉
𝑘  (γ),

𝑉
𝑘 (µ)}, Max{

𝑊
𝑘  (γ), 

𝑊
𝑘  (µ)}} 

= Max {Max{
𝑉
𝑘 (γ), 

𝑊
𝑘  (γ)},Max {

𝑉
𝑘 (µ), 

𝑊
𝑘  (µ)}} = Max {

𝐻
𝑘  (γ), 

𝐻
𝑘 (µ)}.                                                  

Hence, V∩W= H is Multi Fermatean Fuzzy Lie sub algebra over L.  

Definition 3.14. Let Nl={1,2,....,l}, Nn={1,2,....,n} and L be a Lie Algebra of vectors over the 

field F. If  V = (𝜏𝑉
1  , 𝜏𝑉

2,...,𝜏𝑉
𝑙 ; 

𝑉
1  ,

𝑉
2 ,...,

𝑉
𝑛) and W = (𝜏𝑊

1  , 𝜏𝑊
2 ,...,𝜏𝑊

𝑙 ; 
𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) are two 

Multi Fermatean Fuzzy sets on L, then the product H= V×W defined on L ×L will be known 

as generalized Cartesian product if                                                                                                                                          

(V×W) (γ,µ) =[ (𝜏𝑉
1  , 𝜏𝑉

2,...,𝜏𝑉
𝑙 ; 

𝑉
1  ,

𝑉
2 ,...,

𝑉
𝑛) × (𝜏𝑊

1  , 𝜏𝑊
2 ,...,𝜏𝑊

𝑙 ; 
𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 )] (γ,µ)                                      

= (𝜏𝐻
1 (γ,µ), 𝜏𝐻

2 (γ,µ),...,𝜏𝐻
𝑙 (γ,µ); 

𝐻
1 (γ,µ), 

𝐻
2 (γ,µ),...,

𝐻
𝑛 (γ,µ)), ∀ (γ,µ) ∈ L ×L,                               

where, 𝜏𝐻
𝑖  (γ,µ)=(𝜏𝑉

𝑖  ×𝜏𝑊
𝑖 )(γ,µ)= Min { 𝜏𝑉

𝑖  (γ), 𝜏𝑊
𝑖  (µ)}, ∀ i∈Nl .                                                                 


𝐻
𝑘  (γ,µ)=(

𝑉
𝑘  ×

𝑊
𝑘 )(γ,µ)= Max{ 

𝑉
𝑘 (γ), 

𝑊
𝑘 (µ)}, ∀ k∈Nn. Evidently the generalized Cartesian 

product (V×W) is Multi Fermatean Fuzzy set on L ×L if 0 ≤ {𝜏𝐻
𝑖  (γ,µ)}3 +{

𝐻
𝑘 (γ,µ)}3 ≤ 1 i.e., 

0 ≤ {Min{𝜏𝑉
𝑖  (γ), 𝜏𝑊

𝑖  (µ)}}3 + {Max{
𝑉
𝑘 (γ), 

𝑊
𝑘 (µ)}}3 ≤ 1, where, i∈Nl ,k∈Nn.  

Theorem 3.15. Let L be the Lie Algebra of vectors over the field F. If V = (𝜏𝑉
1  , 𝜏𝑉

2,...,𝜏𝑉
𝑙 ; 

𝑉
1  

,
𝑉
2 ,...,

𝑉
𝑛) and W = (𝜏𝑊

1  , 𝜏𝑊
2 ,...,𝜏𝑊

𝑙 ; 
𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 )  are two Multi Fermatean Fuzzy Lie sub 

algebra of L, then the generalized Cartesian product (V×W) is Multi Fermatean Fuzzy Lie sub 

algebra of L×L.  

Proof. Let Nl={1,2,....,l}, Nn={1,2,....,n} and L be a Lie Algebra of vectors over the field F. 

Then, ∀ i∈Nl ,∀ k∈Nn ∀ γ=(γ1,γ2), µ=(µ1,µ2) ∈L ×L and c∈F, we have,                                                                         

(𝜏𝑉
𝑖  ×𝜏𝑊

𝑖  )(γ+µ) =(𝜏𝑉
𝑖  ×𝜏𝑊

𝑖 ) ((γ1,γ2)+(µ1,µ2)) =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) (( γ1 + µ1),( γ2 + µ2))                                          

= Min { 𝜏𝑉
𝑖 ( γ1 + µ1), 𝜏𝑊

𝑖 ( γ2 + µ2 ) }                                                                                                            

≥ Min {Min { 𝜏𝑉
𝑖 ( γ1), 𝜏𝑉

𝑖 ( µ1 ) },Min { 𝜏𝑊
𝑖 ( γ2), 𝜏𝑊

𝑖 ( µ2 )}}                                                                  

=Min {Min { 𝜏𝑉
𝑖 ( γ1), 𝜏𝑊

𝑖 ( γ2 ) },Min { 𝜏𝑉
𝑖 ( µ1), 𝜏𝑊

𝑖 ( µ2 )}}                                                                   

=Min { ( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( γ1 , γ2),( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( µ1 , µ2 ) }                                                                             

=Min { ( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( γ),( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( µ ) }                                                                                                                                          
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( 
𝑉
𝑘  × 

𝑊
𝑘   )( γ + µ) =( 

𝑉
𝑘× 

𝑊
𝑘  ) (( γ1 , γ2)+( µ1 , µ2)) =( 

𝑉
𝑘× 

𝑊
𝑘 ) (( γ1 + µ1),( γ2 + µ2 

= Max { 
𝑉
𝑘 ( γ1 + µ1), 𝑊

𝑘 ( γ2 + µ2 ) }        

  ≤ Max {Max { 
𝑉
𝑘 ( γ1), 𝑉

𝑘 ( µ1) },Min { 
𝑊
𝑘 ( γ2), 𝑊

𝑘 ( µ2 )}}                   

=Max {Max { 
𝑉
𝑘  ( γ1), 𝑊

𝑘 ( γ2 ) },Max { 
𝑉
𝑘 ( µ1), 𝑊

𝑘  ( µ2 )}}                  

=Max { ( 
𝑉
𝑘× 

𝑊
𝑘 ) ( γ1 , γ2),( 𝑉

𝑘× 
𝑊
𝑘 ) ( µ1 , µ2 )}} =Max { ( 

𝑉
𝑘× 

𝑊
𝑘 ) ( γ),( 

𝑉
𝑘× 

𝑊
𝑘 ) ( µ ) }                 

( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖  )(c γ) =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) {c( γ1 , γ2 ) } =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) (c γ1,c γ2 )      

= Min { 𝜏𝑉
𝑖 (c γ1), 𝜏𝑊

𝑖 (c γ2 ) } ≥ Min { 𝜏𝑉
𝑖 ( γ1), 𝜏𝑊

𝑖 ( γ2 ) }       

  =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( γ1 , γ2 ) =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( γ )   

 ( 
𝑉
𝑘  × 

𝑊
𝑘 ) {(c γ ) } =( 

𝑉
𝑘× 

𝑊
𝑘 ) {c( γ1 , γ2 ) } =( 

𝑉
𝑘× 

𝑊
𝑘 ) (c γ 1,c γ 2 )    

                       = Max { 
𝑉
𝑘  (c γ 1), 𝑊

𝑘 (c γ 2 ) } ≤ Max { 
𝑉
𝑘 ( γ 1), 𝑊

𝑘 ( γ 2 ) }  

         =( 
𝑉
𝑘× 

𝑊
𝑘 ) ( γ 1 , γ 2 ) =( 

𝑉
𝑘× 

𝑊
𝑘 ) ( γ )                                                                                                    

( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖  )[γ,µ] =( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) [( γ1 , γ2),( µ1 , µ2)]                              

≥ Min {Min { 𝜏𝑉
𝑖 ( γ1), 𝜏𝑊

𝑖 ( γ2)} , {Min { 𝜏𝑉
𝑖 ( µ 1), 𝜏𝑊

𝑖 ( µ 2)}}      

 = Min{( 𝜏𝑉
𝑖  × 𝜏𝑊

𝑖 ) ( γ1, γ2) },{ ( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( µ1 , µ2)}                        

=Min{ ( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) ( γ), ( 𝜏𝑉
𝑖 × 𝜏𝑊

𝑖 ) (µ) }                                                                                                                       

( 
𝑉
𝑘  × 

𝑊
𝑘 )[ γ , µ] =( 

𝑉
𝑘× 

𝑊
𝑘 ) [( γ1 , γ2),( µ1 , µ2)]                               

≤ Max {Max { 
𝑉
𝑘 ( γ1), 𝑊

𝑘 ( γ2)}, {Max {
𝑉
𝑘 (µ1), 𝑊

𝑘 (µ2)}}                                

= Max {(
𝑉
𝑘× 

𝑊
𝑘 ) ( γ1,γ2)} , {( 

𝑉
𝑘× 

𝑊
𝑘 ) (µ1 ,µ2)}                          

=Max {( 
𝑉
𝑘× 

𝑊
𝑘 ) (γ), ( 

𝑉
𝑘× 

𝑊
𝑘 ) (µ) }.                           

Hence, (V×W) is Multi Fermatean Fuzzy Lie sub algebra of L×L.  

4. Multi Fermatean fuzzy Lie algebra homomorphisms 

In this section, the properties of Multi Fermatean Fuzzy Lie sub algebras and Multi Fermatean 

Fuzzy Lie ideals under homomorphisms of Lie algebras are investigated. Also some of their 

preservation aspects are examined.  
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Definition 4.1. Let L1 and L2 be two Lie algebras over the field F. A linear transformation ϕ: 

L1 → L2 is said to be Lie homomorphism if the relationship ϕ([γ,µ])=[ϕ(γ),ϕ(µ)] is true, ∀ γ,µ 

∈ L1.  

Definition 4.2. Let L1 and L2 be two Lie algebras over the field F. Then a Lie homomorphism 

ϕ: L1 → L2 is said have natural extension ϕ: IL1 → IL2 if  for all W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  

,
𝑊
2 ,...,

𝑊
𝑛 ) ∈I L1 and µ∈L2, the followings hold: ϕ(𝜏𝑊

𝑖  )(µ)= Sup{𝜏𝑊
𝑖 (γ): γ∈ϕ−1(µ),γ∈L1}, for 

all i=1,2,3,...,l. ϕ(
𝑊
𝑘  )(µ)= Inf{

𝑊
𝑘  (γ): γ∈ ϕ −1(µ),γ∈L1}, for all k=1,2,3,...,n.  

Theorem 4.3. Let W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 )  ∈IL1 be Multi Fermatean Fuzzy Lie 

sub algebras and ϕ: L1 → L2 be Lie homomorphism between L1 and L2. Then ϕ (W) is Multi 

Fermatean Fuzzy Lie sub algebras of L2.  

Proof. Suppose that µ1, µ2 ∈ L2. Then {γ: γ∈ ϕ−1(µ1+µ2)} ⊇ {γ1+γ2:γ1∈ ϕ−1(µ1),γ2∈ ϕ−1 (µ2)}. 

Now, for all i=1,2,3,...,l, we have,                                                                                             

ϕ(𝜏𝑊
𝑖  )(µ1+µ2)= Sup{𝜏𝑊

𝑖  (γ): γ∈ ϕ−1(µ1+µ2),γ∈L1}                                                                             

≥ {𝜏𝑊
𝑖 (γ1+γ2) :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                                       

≥ Sup{ Min{ 𝜏𝑊
𝑖 (γ1), 𝜏𝑊

𝑖  (γ2)} :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                    

= Min{Sup{𝜏𝑊
𝑖 (γ1) :γ1∈ ϕ−1(µ1)}, Sup{𝜏𝑊

𝑖 (γ2) :γ2∈ ϕ−1(µ2)}}                                                               

= Min{ϕ(𝜏𝑊
𝑖 )(µ1),ϕ(𝜏𝑊

𝑖 )(µ2)}                                                                                                                        

and for all k=1,2,3,...,n, we have,                                                                                                            

ϕ(
𝑊
𝑘 )(µ1+µ2)= Inf{

𝑊
𝑘  (γ): γ∈ ϕ−1(µ1+µ2),γ∈L1}                                                                         

≤ {
𝑊
𝑘 (γ1+γ2) :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                         

≤ Inf{ Max{ 
𝑊
𝑘 (γ1),𝑊

𝑘 (γ2)} :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                             

=Max{Inf{
𝑊
𝑘 (γ1) :γ1∈ ϕ−1(µ1)}, Inf{

𝑊
𝑘 (γ2) :γ2∈ ϕ−1(µ2)}}                                                  

 = Max{ϕ(
𝑊
𝑘 )(µ1),ϕ(

𝑊
𝑘 )(µ2)}.                                                                                                     

For µ ∈ L2 and c∈ F, we have, {γ: γ∈ ϕ−1(cµ1)} ⊇ {cγ:γ∈ ϕ−1(µ)}.                                                                                                                      

Now, for all i=1,2,3,...,l, we have,                                                                                                           

ϕ(𝜏𝑊
𝑖  )(cµ)= Sup{𝜏𝑊

𝑖 (cγ): γ∈ ϕ−1(µ),γ∈L1}                                                                                

≥ Sup{𝜏𝑊
𝑖 (cγ): γ∈ ϕ−1(cµ),γ∈L1}                                                                                                              

≥ Sup{𝜏𝑊
𝑖 (γ): γ∈ ϕ−1(µ),γ∈L1}                                                                                                                          

= ϕ(𝜏𝑊
𝑖 )(µ).                                                                                                                                                 
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Similarly, for all k=1,2,3,...,m, we can we prove that                                                                                               

ϕ(
𝑊
𝑘 )(cµ)= Inf{

𝑊
𝑘 (cγ): γ∈ ϕ−1(µ),γ∈L1}                                                                                                   

≤ Inf{
𝑊
𝑘 (cγ): γ∈ ϕ−1(cµ),γ∈L1}                                                                                                                             

≤ Inf{
𝑊
𝑘 (γ): γ∈ ϕ−1(µ),γ∈L1}                                                                                                                                         

= ϕ(
𝑊
𝑘 )(µ).                                                                                                                                                                   

For, µ1, µ2 ∈ L2, then {γ: γ∈ ϕ−1(µ1+µ2)} ⊇ {γ1+γ2:γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}.                                                              

Now, for all i=1,2,3,...,l, we have,                                                                                                                             

ϕ(𝜏𝑊
𝑖  )([µ1,µ2])= Sup{𝜏𝑊

𝑖 (γ): γ∈ ϕ−1([µ1,µ2]),γ∈L1}                                                                                         

≥ Sup{𝜏𝑊
𝑖 ([γ1,γ2]) :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                                        

≥ Sup{ Min{ 𝜏𝑊
𝑖 (γ1),𝜏𝑊

𝑖 (γ2)} :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                     

= Min{Sup{𝜏𝑊
𝑖 (γ1) :γ1∈ ϕ−1(µ1)}, Sup{𝜏𝑊

𝑖 (γ2) :γ2∈ ϕ−1(µ2)}}                                                                          

= Min{ϕ(𝜏𝑊
𝑖 )(µ1),ϕ(𝜏𝑊

𝑖 )(µ2)}.                                                                                                                  

Similarly, for all k=1,2,3,...,m, we can we prove that                                                                                                      

ϕ(
𝑊
𝑘 )([µ1,µ2])= Sup{

𝑊
𝑘 (γ): γ∈ ϕ−1([µ1,µ2]),γ∈L1}                                                                                         

≥ Sup{
𝑊
𝑘 ([γ1,γ2]) :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                                          

≥ Sup{ Min{ 
𝑊
𝑘 (γ1), 𝑊

𝑘  (γ2)} :γ1∈ ϕ−1(µ1),γ2∈ ϕ−1(µ2)}                                                                                  

= Min{Sup{
𝑊
𝑘 (γ1) :γ1∈ ϕ−1 (µ1)}, Sup{

𝑊
𝑘 (γ2) :γ2∈ ϕ−1(µ2)}}                                                                          

= Min{ϕ(
𝑊
𝑘 )(µ1), ϕ(

𝑊
𝑘 )(µ2).                                                                                                                    

Hence, ϕ (W) is Multi Fermatean Fuzzy Lie sub algebras of L2. 

Theorem 4.4. Let W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 ) ∈IL1 be Multi Fermatean Fuzzy Lie 

ideal and ϕ: L1 → L2 be Lie homomorphism between L1 and L2. Then  ϕ(W) is Multi 

Fermatean Fuzzy Lie ideal of L2.  

Proof. The proof is similar to the proof of Theorem 4.3  

Theorem 4.5. Let W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 )∈IL2 be Multi Fermatean Fuzzy Lie sub 

algebras and ϕ: L1 → L2 be Lie homomorphism between L1 and L2. Then ϕ−1(W) is Multi 

Fermatean Fuzzy Lie sub algebra of L1.  
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Proof. Suppose that µ1, µ2 ∈ L1. Now, for all i=1,2,3,...,l; k=1,2,3,...,n; we have,                                 

ϕ−1 (𝜏𝑊
𝑖  )(µ1+µ2)= 𝜏𝑊

𝑖 [ϕ(µ1+µ2)]                                                                                                     

=𝜏𝑊
𝑖 [ϕ(µ1)+ϕ(µ2)]                                                                                                                                             

≥ Min {𝜏𝑊
𝑖 (ϕ(µ1)), 𝜏𝑊

𝑖 (ϕ(µ2))}                                                                                                       

=Min {ϕ−1(𝜏𝑊
𝑖 )(µ1), ϕ

−1(𝜏𝑊
𝑖 )(µ2)}                                                                                              

ϕ−1(
𝑊
𝑘 )(µ1+µ2) = 

𝑊
𝑘 [ϕ(µ1+µ2)]                                                                                                                                        

=
𝑊
𝑘 [ϕ(µ1)+ϕ(µ2)]                                                                                                                                    

≤ Max {
𝑊
𝑘 (ϕ(µ1)), 𝑊

𝑘 (ϕ(µ2))}                                                                                                   

=Max {ϕ−1(
𝑊
𝑘 )(µ1), ϕ−1(

𝑊
𝑘 )(µ2)}.                                                                                          

For all µ ∈ L1 and c∈ F, we have,                                                                                                                          

ϕ−1(𝜏𝑊
𝑖 )(cµ)= 𝜏𝑊

𝑖  [ϕ(cµ)] =𝜏𝑊
𝑖 [cϕ(µ)] ≥ 𝜏𝑊

𝑖 (ϕ(µ)) = ϕ−1(𝜏𝑊
𝑖 )(µ).                                                      

ϕ−1(
𝑊
𝑘 )(cµ)= 

𝑊
𝑘 [ϕ(cµ)] =

𝑊
𝑘 [cϕ(µ)] ≤ 

𝑊
𝑘 (ϕ(µ)) = ϕ−1(

𝑊
𝑘 )(µ).                                                   

For all µ1, µ2 ∈ L1, we have,                                                                                                                                               

ϕ−1(𝜏𝑊
𝑖 )[µ1,µ2]= 𝜏𝑊

𝑖 (ϕ[µ1,µ2]) =𝜏𝑊
𝑖 [ϕ(µ1),ϕ(µ2)]                                                                                                                                

≥ Min {𝜏𝑊
𝑖 (ϕ(µ1)), 𝜏𝑊

𝑖 (ϕ(µ2))}                                                                                                                      

=Min {ϕ−1 (𝜏𝑊
𝑖 )(µ1), ϕ

−1 (𝜏𝑊
𝑖 )(µ2)}                                                                                                           

ϕ−1(
𝑊
𝑘 )[µ1,µ2] = 

𝑊
𝑘 (ϕ[µ1,µ2])=

𝑊
𝑘 [ϕ(µ1),ϕ(µ2)]                                                                                                                            

≤ Max {
𝑊
𝑘 (ϕ(µ1)), 𝑊

𝑘 (ϕ(µ2))}                                                                                                                  

=Max {ϕ−1(
𝑊
𝑘 )(µ1), ϕ

−1(
𝑊
𝑘 )(µ2)}.                                                                                               

Hence, ϕ−1(W) is multi Fermatean Fuzzy Lie sub algebra of L1.  

Theorem 4.6. Let W = (𝜏𝑊
1  , 𝜏𝑊

2 ,...,𝜏𝑊
𝑙 ; 

𝑊
1  ,

𝑊
2 ,...,

𝑊
𝑛 )∈IL2 be Multi Fermatean Fuzzy Lie 

ideal and ϕ: L1 → L2 be Lie homomorphism between L1 and L2. Then ϕ−1(W) is Multi 

Fermatean Fuzzy Lie ideal of L1.  

Proof. The proof is similar to the proof of theorem (4.5)  
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5. Conclusion 

In this paper we introduce the concept of Multi Fermatean Fuzzy Lie sub algebras and Multi 

Fermatean fuzzy Lie ideals of Lie algebra. Some of their fundamental properties and operations 

like intersection and generalized Cartesian product of Multi Fermatean Fuzzy Lie sub algebras 

are investigated. Moreover, the relationship between Multi Fermatean Fuzzy Lie sub algebras 

and Multi Fermatean Fuzzy Lie ideals are established. Lastly, the image and the inverse image 

of Multi Fermatean Fuzzy Lie sub algebras (Multi Fermatean Fuzzy Lie ideals) under Lie 

homomorphisms are also studied. In future the proposed work shall be extended with the help 

of multi spherical set and so on in Lie algebras. The proposed work is applicable in any multi 

criterion decision making problem, pattern recognition and classification problems especially 

problems with more than one decision makers. Therefore, this new theory will be a useful tool 

in decision and ranking problems such as robot selection, green supplier’s selections, solid 

waste landfill site section problems etc. In the near future we give some application of the 

proposed theory to some multi criterion decision making problems such as medical diagnosis 

and pattern recognitions.  
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Abstract. In this article, we introduce the notion of statistical weak convergence in 

Pringsheim’s sense of double sequence in a normed linear space 𝑋. We discuss the algebra of 

weak statistical limit of double sequence. Further, we also discuss the existence of weak 
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1. Introduction  

The idea of statistical convergence is the generalization of the usual convergence. 

Independently, Fast [6] and Schoenberg [13] proposed the idea of statistical convergence. It 

was further examined from the perspective of sequence space and connected to summability 

theory by a number of authors, including Buck [4], Fridy [7], Gokhan et al. [8], Tripathy [14], 

and others. The concept of asymptotic density of subsets of the natural number set ℕ is 

necessary for the idea to be feasible. The following definitions are due to Tripathy [14]. 
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The density 𝛿(𝐷)  of a subset 𝐷 of ℕ × ℕ is defined as follows: 

 𝛿(𝐷) =  lim
𝑝,𝑞→∞

1

𝑝𝑞
{∑ ∑ 𝜒𝐷(𝑛, 𝑘)

𝑞
𝑘=1

𝑝
𝑛=1 , 𝜒𝐷(𝑛, 𝑘)} exists. 𝛿(𝐷𝑐) =  1 − 𝛿(𝐷). 

If a double sequence (𝑎𝑛𝑘) fails to satisfy a property over a subset of ℕ × ℕ of density zero, 

then (𝑎𝑛𝑘) is said to satisfy property 𝑃 for almost all 𝑛 and 𝑘, written as 𝑎. 𝑎. 𝑛 and 𝑘. 

 It was Pringsheim [12] who first proposed the idea of double sequence. Furthermore, it is 

found in Bromwich [3]. Moricz [10], Basarir and Sonalcan [1], and others have all examined 

the double sequence from various angles. Pringsheim [12] defined the convergence of double 

sequence as following.  

A double sequence (𝑎𝑛𝑘) is considered to converge if, lim
𝑛,𝑘→∞

𝑎𝑛𝑘 = 𝐿, where 𝑛, 𝑘 → ∞, 

independent of one another.  

Connor et al. [5] have created a novel concept, weak statistical convergence, to characterize 

Banach spaces with separable duals. Weak statistical convergence was also used by Pehlivan 

and Karaev [11] to justify a result of Gokhberg and Krein [9] on compact operators. Bhardwaj 

and Bala [2] established that the notion of weak statistical convergence is a generalization of 

the notion of weak convergence and that the notions of the norm and weak statistical 

convergence are comparable in finite dimensional normed spaces. 

2. Statistical Weak Convergence in Pringsheim’s Sense Double Sequence 

Definition 2.1. A double sequence (𝑎𝑛𝑘) is said to be weak statistically convergent in 

Pringsheim’s sense to limit 𝐿 ∈ 𝑋 if lim
𝑝,𝑞→∞

1

𝑝𝑞
|𝑛 ≤ 𝑝; 𝑘 ≤ 𝑞: 𝑓(𝑎𝑛𝑘 − 𝐿) ≥ 𝜀| = 0, 𝑓 ∈ 𝑋

′. i.e., 

for all 𝑓 ∈ 𝑋′,  𝑓(𝑎𝑛𝑘) − 𝑓(𝐿) < 𝜀, for 𝑎. 𝑎. 𝑛 &𝑘.  It is denoted by 𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿. 
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Theorem 2.1. The weak statistical limit of a double sequence if it exists is unique.  

 Proof: Consider that 𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 and 𝑎𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    𝑀, where 𝐿 ≠ 𝑀 and 𝐿,𝑀 ∈ 𝑋. 

Then, for all 𝑓 ∈ 𝑋′ and 𝐿,𝑀 ∈ 𝑋,  

  |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| <
𝜀

2
, for 𝑎. 𝑎. 𝑛 &𝑘 and,  |𝑓(𝑎𝑛𝑘) − 𝑓(𝑀)| <

𝜀

2
, for 𝑎. 𝑎. 𝑛 &𝑘. 

We have,  |𝑓(𝐿) − 𝑓(𝑀)| = |𝑓(𝐿) − 𝑓(𝑎𝑛𝑘) + 𝑓(𝑎𝑛𝑘) − 𝑓(𝑀)| 

                                             = |𝑓(𝐿) − 𝑓(𝑎𝑛𝑘)| + |𝑓(𝑎𝑛𝑘) − 𝑓(𝑀)| 

                                 ≥
𝜀

2
+
𝜀

2
 , 𝑎. 𝑎. 𝑛 &𝑘                                                                         

 ≥ 𝜀, 𝑎. 𝑎. 𝑛 &𝑘.                                                

This implies, |𝑓(𝐿) − 𝑓(𝑀)| → 0. 

This implies, 𝑓(𝐿) = 𝑓(𝑀). Hence, the weak statistical limit is unique.  

Theorem 2.2. A double sequence which is convergent in Pringsheim’s sense is weak statistical 

convergent in Pringsheim’s sense but not conversely.  

Proof: Let (𝑎𝑛𝑘) be convergent in Pringsheim’s sense. Then, for every 𝜀 > 0 and for all 𝑛, 𝑘 ≥

𝑛0 we have, |𝑎𝑛𝑘 − 𝐿| < 𝜀. i.e., |𝑎𝑛𝑘 − 𝐿| → 0.    … … … (1) 

Also, |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| = |𝑓(𝑎𝑛𝑘 − 𝐿)| → 0, for 𝑎. 𝑎. 𝑛&𝑘 (using 1) 

This implies, |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| → 0, for 𝑎. 𝑎. 𝑛&𝑘 . Hence, (𝑎𝑛𝑘) is weak statistically 

convergent in Pringsheim’s sense.  

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

42 
 

 

The following example shows that the converse of the theorem is not true.  

Example 2.1. Consider 𝑋 = ℓ𝑝, 1 < 𝑝 < ∞. Let (𝑎𝑛𝑘) ∈ ℓ𝑝, defined by 𝑎𝑗
𝑛𝑘 = 𝑒𝑛𝑘, for all 𝑗 ≤

𝑛, 𝑘. Let 𝑓 ∈ (ℓ𝑝)
′
,where (ℓ𝑝)

′
 is ℓ𝑞 with 

1

𝑝
+
1

𝑞
= 1, defined by 𝑓(𝑎𝑛𝑘) = ∑ 𝑎𝑗

𝑛𝑘𝑏𝑗
∞
𝑗=1 . Then, 

|𝑓(𝑎𝑛𝑘)| = |∑ 𝑎𝑗
𝑛𝑘𝑏𝑗

∞
𝑗=1 | ≤ |(∑ 𝑎𝑗

𝑛𝑘∞
𝑗=1 )

𝑝
|
1

𝑝|(∑ 𝑏𝑗
∞
𝑗=1 )

𝑞
|
1

𝑞 → 0, as  𝑛, 𝑘 → ∞. This implies that 

𝑎𝑛𝑘
𝑤
→0 and hence, 𝑎𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    0. However, 𝑎𝑛𝑘 → 0, as  𝑛, 𝑘 → ∞. Hence, the result.  

Theorem 2.3. Consider two double sequences (𝑎𝑛𝑘) and (𝑏𝑛𝑘) in 𝑋 and  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿,                     

𝑏𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝑀, where 𝐿,𝑀 ∈  𝑋. Then the following conditions holds true: 

(a)  𝑎𝑛𝑘 + 𝑏𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 +𝑀 

(b) 𝑎𝑛𝑘 − 𝑏𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 −𝑀 

(c) 𝑎𝑛𝑘. 𝑏𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿.𝑀 

(d) 
𝑎𝑛𝑘

𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    

𝐿

𝑀
, provided neither bnk nor M are zero element of X. 

(e) 𝛼𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝛼𝐿, 𝛼 is a scalar.  

Proof: (a) Given that  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 and 𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    𝑀. Then, for every 𝜀 > 0,   |𝑓(𝑎𝑛𝑘) −

𝑓(𝐿)| <
𝜀

2
, for 𝑎. 𝑎. 𝑛&𝑘 and |𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)| <

𝜀

2
, for 𝑎. 𝑎. 𝑛&𝑘 and for all 𝑓 ∈ 𝑋′, 𝐿, 𝑀 ∈  𝑋. 

For all 𝑓 ∈ 𝑋′, |{𝑓(𝑎𝑛𝑘) + 𝑓(𝑏𝑛𝑘)} − {𝐿 + 𝑀}| = |{𝑓(𝑎𝑛𝑘) − 𝐿} + {𝑓(𝑎𝑛𝑘) − 𝑀}| 

                                                           <
𝜀

2
+
𝜀 

2
, for 𝑎. 𝑎. 𝑛&𝑘                 

                                                                                       < 𝜀, for 𝑎. 𝑎. 𝑛 &𝑘.        

This implies, |{𝑓(𝑎𝑛𝑘) + 𝑓(𝑏𝑛𝑘)} − {𝐿 + 𝑀}| < 𝜀, for 𝑎. 𝑎. 𝑛&𝑘. 
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(b) Given that  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 and 𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    𝑀. Then, for every 𝜀 > 0,   |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| <

𝜀

2
, 

for 𝑎. 𝑎. 𝑛&𝑘 and |𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)| <
𝜀

2
, for 𝑎. 𝑎. 𝑛&𝑘 and for all 𝑓 ∈ 𝑋′, 𝐿,𝑀 ∈  𝑋.  

For all 𝑓 ∈ 𝑋′, |{𝑓(𝑎𝑛𝑘) − 𝑓(𝑏𝑛𝑘)} − {𝐿 − 𝑀}| = |{𝑓(𝑎𝑛𝑘) − 𝐿} + {𝑓(𝑎𝑛𝑘) − 𝑀}| 

                                                             <
𝜀

2
+
𝜀 

2
, for 𝑎. 𝑎. 𝑛&𝑘                 

                                                                                       < 𝜀, for 𝑎. 𝑎. 𝑛 &𝑘.        

This implies, |{𝑓(𝑎𝑛𝑘) − 𝑓(𝑏𝑛𝑘)} − {𝐿 − 𝑀}| < 𝜀, for 𝑎. 𝑎. 𝑛&𝑘. 

(c) Given that  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 and 𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    𝑀. Then, for every 𝜀 > 0,   |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| < 𝜀1, 

for 𝑎. 𝑎. 𝑛&𝑘 and |𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)| < 𝜀2, for 𝑎. 𝑎. 𝑛&𝑘 and for all 𝑓 ∈ 𝑋′, 𝐿,𝑀 ∈  𝑋.  

For all 𝑓 ∈ 𝑋′, we have 

|𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) − 𝑓(𝐿.𝑀)| = |𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) − 𝑓(𝑎𝑛𝑘)𝑓(𝑀) + 𝑓(𝑎𝑛𝑘)𝑓(𝑀) − 𝑓(𝐿𝑀)|   

                                       = |𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) − 𝑓(𝑎𝑛𝑘)𝑓(𝑀) + 𝑓(𝑎𝑛𝑘)𝑓(𝑀) − 𝑓(𝐿𝑀)|     

                                 = |𝑓(𝑎𝑛𝑘)𝑓(𝑏𝑛𝑘) − 𝑓(𝑎𝑛𝑘)𝑓(𝑀) + 𝑓(𝑎𝑛𝑘)𝑓(𝑀) − 𝑓(𝐿)𝑓(𝑀)| 

                = |𝑓(𝑎𝑛𝑘){𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)} + 𝑓(𝑀){𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)}| 

                            ≤ |𝑓(𝑎𝑛𝑘)| |{𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)}| + |𝑓(𝑀)| |{𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)}| 

                                            < |𝑓(𝑎𝑛𝑘)|𝜀2 + |𝑓(𝑀)|𝜀1for 𝑎. 𝑎. 𝑛&𝑘          …………….. (2) 
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We have,  

|𝑓(𝑎𝑛𝑘)| = |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿) + 𝑓(𝐿)| 

                                                ≤ |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| + |𝑓(𝐿)|                              

                                                                     < 𝜀1 + |𝑓(𝐿)|, for 𝑎. 𝑎. 𝑛&𝑘   ………….(3) 

i.e., Considering 𝜀1 < 1, we have |𝑓(𝑎𝑛𝑘)| < 1 + |𝑓(𝐿)|, for 𝑎. 𝑎. 𝑛&𝑘. Then, |𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) −

𝑓(𝐿.𝑀)| < {1 + |𝑓(𝐿)|}𝜀2 + |𝑓(𝑀)|𝜀1, for 𝑎. 𝑎. 𝑛&𝑘 (using Equation (3) in (2)). 

 Choosing 𝜀2 =
𝜀

2|𝑓(𝐿)+1|
 and 𝜀1 =

𝜀

2|𝑓(𝑀)|
,  |𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) − 𝑓(𝐿.𝑀)| < {1 + |𝑓(𝐿)|}

𝜀

2|𝑓(𝐿)+1|
+

|𝑓(𝑀)|
𝜀

2|𝑓(𝑀)|
, for 𝑎. 𝑎. 𝑛&𝑘. This implies, |𝑓(𝑎𝑛𝑘𝑏𝑛𝑘) − 𝑓(𝐿.𝑀)| < 𝜀, for 𝑎. 𝑎. 𝑛&𝑘. Hence, 

𝑎𝑛𝑘. 𝑏𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿.𝑀 . 

(d)  Given that  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿 and 𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    𝑀. Then, for every 𝜀 > 0,   |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| < 𝜀1, 

for 𝑎. 𝑎. 𝑛&𝑘 and |𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)| < 𝜀2, for 𝑎. 𝑎. 𝑛&𝑘 and for all 𝑓 ∈ 𝑋′, 𝐿,𝑀 ∈  𝑋. 

For all 𝑓 ∈ 𝑋′, |𝑓 (
𝑎𝑛𝑘

𝑏𝑛𝑘
) − 𝑓 (

𝐿

𝑀
)| = |

𝑓(𝑎𝑛𝑘)

𝑓(𝑏𝑛𝑘)
−
𝑓(𝐿)

𝑓(𝑀)
| 

                              = |
𝑓(𝑀)𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)𝑓(𝑏𝑛𝑘)

𝑓(𝑀)𝑓(𝑏𝑛𝑘)
|                       

                                                  = |
𝑓(𝑀)𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)𝑓(𝑀) + 𝑓(𝐿)𝑓(𝑀) − 𝐿𝑓(𝑏𝑛𝑘)

𝑓(𝑀)𝑓(𝑏𝑛𝑘)
| 

                                          = |
𝑓(𝑀){𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)} + 𝑓(𝐿){𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)}

𝑓(𝑀)𝑓(𝑏𝑛𝑘)
| 
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                               ≤
|𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)|

|𝑓(𝑏𝑛𝑘)|
+
|𝑓(𝐿)||𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)|

|𝑓(𝑀)||𝑓(𝑏𝑛𝑘)|
  

                                                    <
𝜀1

|𝑓(𝑏𝑛𝑘)|
+

|𝑓(𝐿)|𝜀2
|𝑓(𝑀)||𝑓(𝑏𝑛𝑘)| 

 , for 𝑎. 𝑎. 𝑛&𝑘 ……………… . . (4) 

Now, |𝑓(𝑀)| = |𝑓(𝑀) − 𝑓(𝑏𝑛𝑘) + 𝑓(𝑏𝑛𝑘)| ≤ |𝑓(𝑏𝑛𝑘) − 𝑓(𝑀)| + |𝑓(𝑏𝑛𝑘)| 

                                                                                 < 𝜀2 + |𝑓(𝑏𝑛𝑘)|, for 𝑎. 𝑎. 𝑛&𝑘 . 

i.e., |𝑓(𝑏𝑛𝑘)| > |𝑓(𝑀) − 𝜀2|, for 𝑎. 𝑎. 𝑛&𝑘. Let 𝜀2 >
|𝑓(𝑀)|

2
, we have, |𝑓(𝑏𝑛𝑘)| > |

𝑓(𝑀)

2
|, for 

𝑎. 𝑎. 𝑛&𝑘. i.e.,  
1

|𝑓(𝑏𝑛𝑘)|
< |

2

𝑓(𝑀)
|, for 𝑎. 𝑎. 𝑛&𝑘. 

Equation (4) implies, |𝑓 (
𝑎𝑛𝑘

𝑏𝑛𝑘
) − 𝑓 (

𝐿

𝑀
)| <

2𝜀1

|𝑓(𝑀)|
+
|𝑓(𝐿)|2𝜀2

|𝑓(𝑀)|2 
 , for 𝑎. 𝑎. 𝑛&𝑘…(5). Choosing 

𝜀1 =
𝜀|𝑓(𝑀)|

4
 and 𝜀2 =

𝜀|𝑓(𝑀)|2

4|𝑓(𝐿)|
, for 𝑎. 𝑎. 𝑛&𝑘.  

Hence, Equation (5) implies that |𝑓 (
𝑎𝑛𝑘

𝑏𝑛𝑘
) − 𝑓 (

𝐿

𝑀
)| < 𝜀, for 𝑎. 𝑎. 𝑛&𝑘. i.e.,  

𝑎𝑛𝑘

𝑏𝑛𝑘

𝑤−𝑠𝑡𝑎𝑡
→    

𝐿

𝑀
. 

(e) Given that  𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝐿. Then, for every 𝜀 > 0,   |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| < 𝜀, for 𝑎. 𝑎. 𝑛&𝑘, for 

all 𝑓 ∈ 𝑋′, 𝐿 ∈  𝑋.  i.e., |𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| → 0. 

For all 𝑓 ∈ 𝑋′ and any scalar 𝛼, 

 |𝑓(𝛼𝑎𝑛𝑘) − 𝑓(𝛼𝐿)| = |𝛼𝑓(𝑎𝑛𝑘) − 𝛼𝑓(𝐿)| < 𝛼|𝑓(𝑎𝑛𝑘) − 𝑓(𝐿)| → 0. 

i.e., 𝛼𝑎𝑛𝑘
𝑤−𝑠𝑡𝑎𝑡
→    𝛼𝐿.  
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     3. Conclusions  

In this article, we study statistical convergence of double sequence from the point of view of 

weak convergence. We also established the algebra of limits for addition, subtraction, 

multiplication, division and absolute homogeneity of weak statistical convergence of double 

sequence. Further, we demonstrate that a double sequence which is convergent in Pringsheim’s 

sense is weak statistical convergence but not vice-versa and provide example to support the 

assertion. 
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Absract: In this paper we are have introduce the classes of double sequence 2ℓ(𝑝)(Δ𝑚), 

))((
_

2 mpc  and ))((
_

02 mpc   of interval numbers in terms of the difference operator ∆𝑚 (m  0 

be an integer). We investigate some algebraic and topological properties like solid, monotone, 

symmetric, convergence free etc. 
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1. Introduction 

The concept of interval arithmetic was suggested by Dwyer [15] in 1951. It has been further 

studied and developed by Moore [8], Moore and Yang [9] and others ([15], [16], [17] and [20]). 

Chiao [13] studied on sequence of interval numbers and defined usual convergence of 

sequences of interval numbers. Şengönül and Eryilmaz [14] studied bounded and convergent 

sequence spaces of interval numbers and proved completeness of the spaces. Recently Esi [1-

8], Esi and Braha [18], Esi and Esi [19], Esi and Catalbas [21] studied strongly almost-

convergence and statistically almost-convergence of interval numbers. 
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 A set consisting of a closed interval of real numbers 𝑥 such that a ≤ x ≤ b is called an interval 

number. A real interval can be considered as a set and we denote the set of all real valued closed 

intervals by ℝ. Any elements of ℝ is a closed interval, denoted by �̅�, defined by �̅� = 

{𝑥 ∈ ℝ: 𝑎 ≤  𝑥 ≤  𝑏}. An interval number �̅�  is a closed subset of real numbers [15]. Let xl and 

xr be first and last points of interval number �̅�, respectively. For x1, x2ℝ, we have the following 

arithmetic operations 

                                       (i) �̅�1 = �̅�2  𝑥1𝑙 = 𝑥2𝑙, 𝑥1𝑟 = 𝑥2𝑟 

                                      (ii)  �̅�1 + �̅�2 = {𝑥 ∈ ℝ : 𝑥1𝑙 + 𝑥2𝑙 ≤ 𝑥 ≤  𝑥1𝑟 + 𝑥2𝑟}  

                                      (iii)  �̅� = {𝑥 ∈ ℝ ∶  𝛼𝑥1𝑙 ≤ 𝑥 ≤ 𝛼𝑥1𝑟}    0 

                                      (iv) 𝛼�̅� = {𝑥 ∈ ℝ: 𝛼𝑥1𝑟 ≤ 𝑥 ≤ 𝛼𝑥1𝑙} ,  for 𝛼 < 0 

                                     (v) �̅�1�̅�2= {

𝑥 ∈ 𝑅:
𝑚𝑖𝑛{𝑥1𝑙𝑥2𝑙 , 𝑥1𝑙𝑥2𝑟 ,    𝑥1𝑟𝑥2𝑙 ,   𝑥1𝑟𝑥2𝑟} ≤ 𝑥 ≤

𝑚𝑎𝑥{𝑥1𝑙𝑥2𝑙 , 𝑥1𝑙𝑥2𝑟 ,    𝑥1𝑟𝑥2𝑙 ,   𝑥1𝑟𝑥2𝑟}

} 

The set of all interval numbers ℝ is a complete metric space with respect to the metric 

defined by 

                               d(�̅�1, �̅�2)  = max {𝑥1𝑙 − 𝑥2𝑙 ,   𝑥1𝑟 − 𝑥2𝑟 }.   

In the special case of point interval i.e. �̅�1 = [a, a] and �̅�2 = [b, b], we obtain usual metric of 

ℝ. 

      Consider the transformation f: N → ℝ , by k → f(k) = �̅�, where x = (xk), then �̅� = (�̅�k) is 

called a sequence of interval numbers. The term �̅�k is called kth term of sequence, 𝑥 ̅= (�̅�k). We 

denote the set of all sequence of interval numbers with real terms by 
_

w . 
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2. Preliminaries 

Consider the transformation f : N × N → ℝ by f (n, k) = ( nkx
_

), then 
_

x  = ( nkx
_

) is called a 

double sequence of interval numbers. The nkx
_

 is the (n, k)th term of the sequence (xnk). 

Definition 2.1. An interval valued double sequence ( nkx
_

) is said to be bounded if there exists 

a positive number B such that Bxd nk )0,(
___

for all n, k ∈N. 

We denote the set of all bounded double sequences of interval numbers by 2ℓ∞  and the classes 

of all double sequence of interval numbers by 
_

2 w . 

Definition 2.2. A sequence �̅� = )(
_

nkx  of interval numbers is said to be convergent to the interval 

number �̅�o if for each  𝜖> 0 there exists a positive integer ko such that d nkx
_

( , �̅�o) < 𝜖 for all k  

ko and we denote it by  nk
kn

x
_

,
 lim = �̅�o. This imply that  

                                 nk
kn

x
_

,
 lim = �̅�o  lnk

kn
x lim

,
= 𝑥0𝑙 and lnk

kn
x
_

,
 lim = 𝑥0𝑟.  

We denote the set of all convergent double sequence of interval numbers are denoted by 
_

2 c . 

Definition 2.3. A sequence �̅� = )(
_

nkx  of interval numbers is said to be interval valued Cauchy 

sequence if for every 𝜖 > 0 there exists a positive integer ko such that d nkx
_

( , mpx
_

) < 𝜖 for all 

n  m  ko, k  p  ko. 

Definition 2.4. An interval valued double sequence space �̅�  is said to be solid if �̅� = (�̅�𝑛𝑘 ) 

�̅� whenever |�̅�𝑛𝑘| ≤ |�̅�𝑛𝑘|, for all n, kN and �̅� = (�̅�𝑛𝑘)�̅�. 
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Definition 2.5. An interval valued sequence space �̅� is said to be monotone if �̅� contains the 

canonical pre- image of all its step spaces. 

Definition 2.6. An interval valued sequence space �̅�  is said to be convergence free if �̅� = (�̅�𝑛𝑘) 

∈�̅� whenever  �̅� = (�̅�𝑛𝑘) ∈�̅� and �̅�nk = 0 implies �̅�nk = 0. 

Throughout the paper, p = (pnk) is a sequence of bounded strictly positive numbers, for all n, 

kN. 

Esi [1] define the following interval valued sequence space: 

ℓ̅(𝑝) = {�̅� = (�̅�𝑘):∑[𝑑(�̅�𝑘,0̅)]
𝑝𝑘
< ∞

∞

𝑘=1

}. 

 if pk = 1,  for all kN, then we have 

ℓ̅ = {�̅� = (�̅�𝑘):∑[𝑑(�̅�𝑘,0̅)] < ∞

∞

𝑘=1

}. 

Kizmaz [12] defined the difference sequence space for crisp set. This concept was further 

generalized by Tripathy and Esi [12] as follows.  

Let m  0 be an integer then  

            Z1(∆𝑚) ={(xk)∈
_

2 w : (∆𝑚𝑥𝑘) ∈ Z1}, for Z1 = ℓ∞, c and c0, where ∆𝑚xk = xk - xk+m, for 

all kN . They showed that these are Banach spaces under the norm 

                     ‖𝑥‖∆𝑚= ∑ |𝑥𝑟|
𝑚
𝑟=1  + 

su p
𝑘
|∆𝑚𝑥𝑘|. For m = 1, the sequence spaces ℓ∞(∆), c(∆) and 

c0(∆) are studied by Kizmaz [12]. 

     In this paper we introduce the double sequence space of interval number studied with the 

generalized difference operator as follows: 
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Let �̅� = (�̅�𝑛𝑘) be a double sequence of interval numbers and p = (pnk) is a sequence of bounded 

positive numbers then for an integer m  0 we define 

Z(∆𝑚) = {(�̅�𝑛𝑘) 

_

2 w : (∆𝑚�̅�𝑛𝑘) ∈ 𝑍}, for Z = )(
_

2 p , )(
_

2 pc and )(
_

02
pc , where ∆𝑚�̅�𝑛𝑘= �̅�nk - 

�̅�k+m, for all n, kN.  

 

3. Main Results 

Theorem 3.1 The classes of sequences 2ℓ(𝑝)(Δ𝑚), ))((
_

2 mpc  and ))((
_

02 mpc   are solid and 

hence monotone. 

Proof: Let �̅� = )(
_

nkx  2ℓ(𝑝)(Δ𝑚) and �̅� = )(
_

nky  2ℓ(𝑝)(Δ𝑚) be interval valued double 

sequences such that |�̅�𝑛𝑘 | ≤ |�̅�𝑛𝑘| , for all n, kN. Then 

∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘
< ∞

∞

𝑘=1

 

                                    and  

∑[𝑑(∆𝑚�̅�𝑛𝑘, 0̅)]
𝑝𝑘

∞

𝑘=1

≤∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘
< ∞

∞

𝑘=1

. 

Thus �̅� = (�̅�𝑛𝑘 ) 2ℓ(𝑝)(Δ𝑚). 

Hence 2ℓ(𝑝)(Δ𝑚)  is a solid sequence space.  

This completes the proof. 

Theorem 3.2 The classes of sequences 2ℓ(𝑝)(Δ𝑚), ))((
_

2 mpc  and ))((
_

02 mpc   are not 

convergence free. 
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Proof:  Let m = 2, we consider the interval sequence �̅� = (
_

nkx ) as follows 

                                  x = 
_

nkx = [
−1

(𝑛+𝑘)2
, 0], ∆2�̅� = [

−1

(𝑛+𝑘)2
,

1

(𝑛+𝑘+2)2
], for all n, kN. 

Then, for pnk = 1, for all n, kN, we have 

∑ [𝑑(∆2�̅�𝑛𝑘,0̅)] < ∑ (
1

(𝑛 + 𝑘)2
)

∞

𝑛,𝑘=1

< ∞

∞

𝑛,𝑘=1

. 

Thus �̅� = (
_

nkx ) ∈ 2ℓ(𝑝)(Δ𝑚). 

Now let us define �̅� = (
_

nky ) as follows 

                          
_

nky   = [−(𝑛 + 𝑘)2, 0], then ∆2
_

nky  = [−(𝑛 + 𝑘)2, (𝑛 + 𝑘 + 2)2], for all n, 

kN. 

Then  

∑ [𝑑 (∆2 
_

nky , 0̅)] ≤ ∑ (𝑛 + 𝑘 + 2)2
∞

𝑛,𝑘=1

= ∞.

∞

𝑛,𝑘=1

 

Therefore �̅� = (
_

nky ) )∉ 2ℓ(𝑝)(Δ𝑚). 

Hence the class of sequence 2ℓ(𝑝)(Δ𝑚) is not convergence free.   

This completes the proof. 

Theorem 3.3 The classes of sequence 2ℓ(𝑝)(Δ𝑚), ))((
_

2 mpc 
 
and ))((

_

02 mpc   are sequence 

algebra. 
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Proof. We prove for the sequence space 2ℓ(𝑝)(Δ𝑚),  and for the other classes the proof follows 

similarly. Consider the interval valued double sequences �̅� = )(
_

nkx  2ℓ(𝑝)(Δ𝑚),  and �̅� = )(
_

nky

2ℓ(𝑝)(Δ𝑚).  

Then we have 

∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘
< ∞

∞

𝑘=1

 

                                                         and 

∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘
< ∞.

∞

𝑘=1

 

Now we have  

∑[𝑑(∆𝑚(�̅�𝑛𝑘 �̅�𝑛𝑘), 0̅)]
𝑝𝑘

∞

𝑘=1

∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)((∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘

∞

𝑘=1

 

<∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘

∞

𝑘=1

∑[𝑑(∆𝑚�̅�𝑛𝑘,0̅)]
𝑝𝑘

∞

𝑘=1

 

 

                                                      < ∞. 

Thus (�̅�𝑛𝑘 �̅�𝑛𝑘)  2ℓ(𝑝)(Δ𝑚).. 

This completes the proof.  
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Abstract: In this article we are going to study difference Gai sequence of interval number 

using Orlicz function. We investigate the completeness property, solidity, symmetricity and 

convergence free. 
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1. Introduction 

     From the 19th century real and complex numbers are used to construct many mathematical 

structure.Nowadays fuzzy numbers or interval numbers have also being used to replace these 

real or complex number. It was Dwyer [6] who introduced the concept of interval arithmetic in 

the year 1951. Later on Moore [8] in 1959, Moore and Young [9] in 1962 have developed 

interval arithmetic to a formal system. Chiao introduced sequence of interval numbers and 

defined usual convergence of sequence of interval numbers. Recently Baruah and Dutta [22] 

introduced new types of difference class of interval numbers where they studied the 

completeness property, solidness, convergence free for the classes of sequence using difference 

operator ℓ(𝑝)(Ϫ𝑚), 𝑐(𝑝)(Ϫ𝑚)and 𝑐0(𝑝)(Ϫ𝑚). 

2.Definition and Preliminaries: 

The closed interval of real number 𝑦 can be defined as 𝑐 ≤ 𝑦 ≤ 𝑑 .This closed interval can also 

be called an interval number. A real interval number can also be considered as a set and we 

denote the set of all real valued closed interval by IR. Any member of IR is said to be closed 

interval. If �̅� be the member of IR then  �̅� ={𝑦 ∈  IR ∶ 𝑐 ≤ 𝑦 ≤ 𝑑}. 
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 Let 𝑦𝑙 and 𝑦𝑟be first and last points of 𝑦 ̅interval number respectively. For y1, y2IR, we have 

                                         𝑦1̅̅ ̅ =𝑦2̅̅ ̅ 𝑦1𝑙 = 𝑦2𝑙, 𝑦1𝑟 = 𝑦2𝑟,  

                             �̅�1 + �̅�2 = {𝑦 ∈  IR : 𝑦1𝑙 + 𝑦2𝑙 ≤ 𝑦 ≤  𝑦1𝑟 + 𝑦2𝑟} 

and if   0, then  �̅� = {𝑦 ∈  IR: 𝛼𝑦1𝑙 ≤ 𝑦 ≤ 𝛼𝑦1𝑟} 

 
and 𝛼 < 0 , then 

𝛼�̅� = {𝑦 ∈  IR: 𝛼𝑦1𝑟 ≤ 𝑦 ≤ 𝛼𝑦1𝑙}, 

 

�̅�1�̅�2= {
𝑥 ∈  IR ∶ 𝑚𝑖𝑛{𝑦1𝑙𝑦2𝑙 , 𝑦1𝑙𝑦2𝑟 ,    𝑦1𝑟𝑦2𝑙 ,   𝑦1𝑟𝑦2𝑟} ≤ 𝑦 ≤

𝑚𝑎𝑥{𝑦1𝑙𝑦2𝑙 , 𝑦1𝑙𝑦2𝑟 ,    𝑦1𝑙𝑦2𝑙 ,   𝑦1𝑟𝑦2𝑟}
} 

 

 

The set of all interval numbers IR is a complete metric space defined by 

 

                              d(�̅�1 ,  �̅�2)  = max {𝑦1𝑙 − 𝑦2𝑙 ,  𝑦1𝑟 − 𝑦2𝑟 }    

 

In the special case �̅�1= [a, a] and �̅�2= [b, b], we obtain usual metric of IR. 

 

        Let us define transformation f : N →IR by ƛ→f (ƛ) =�̅�, y= (yƛ) . Then �̅�= (�̅�ƛ) is called 

sequence of interval numbers. The �̅�ƛ is called ƛth term of sequence 𝑦 ̅= (�̅�ƛ) ∈ wi denotes the set 

of all interval numbers with real terms and the algebraic properties of wi. 

 

Now we give new definitions for interval sequences as follows: 

 

A sequence space �̅�with interval value is considered as solid if �̅�=(�̅�ƛ)𝐸 ̅whenever|�̅�ƛ| ≤
|�̅�ƛ|,or all ƛN and �̅� =(�̅�ƛ)�̅�. 

 

A sequence space �̅� with interval values is considered to be monotone if �̅�contains the 

canonical pre_image of all its step spaces. 

 

 A sequence space �̅� with interval values is convergence free defined as follows if �̅�=(�̅�ƛ) 
∈𝐸 ̅whenever �̅� =(�̅�ƛ) ∈�̅� and �̅�ƛ = 0implies �̅�ƛ = 0. 

 

Now we give the definition of convergence of interval numbers: 
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Definition  2.1. A sequence �̅�= (�̅�ƛ) of interval numbers is said to be convergent to the interval 

number �̅�oif for each  >0 there exists a positive integer ƛo such that d (�̅�ƛ, �̅�o) < for all ƛ ƛo 

and we denote it by lim
ƛ
�̅�ƛ= �̅�o.Thus, lim

ƛ
�̅�ƛ= �̅�o  lim

ƛ
𝑥ƛ𝑙= 𝑥0𝑙andlim

ƛ
�̅�ƛ= 𝑥0𝑟 

 

Burton and Coleman [3] defined quasi Cauchy sequence following ways  

If Ϫ𝑥ƛis a null sequence where Ϫ𝑥ƛ = 𝑥ƛ − 𝑥ƛ+1 then a sequence �̅�= (𝑥ƛ̅) of points in IR is 

referred to as quasi Cauchy sequence. 

Throughout the paper, p=(𝑝ƛ) is a sequence of bounded non-negative real numbers. Esi [11] 

define the following interval valued sequence space: 
 

ℓ∞(𝑝) = {�̅� = (�̅�ƛ):∑[𝑑(𝑥ƛ̅̅ ̅, 0̅)]
𝑝ƛ < ∞

∞

ƛ=1

} 

 

 

 

 and if  pƛ = 1 for all ƛ 𝑁, then we have 

ℓ∞ = {�̅� = (�̅�ƛ):∑[𝑑(�̅�ƛ,0̅)] < ∞

∞

ƛ=1

} 

 

A continuous, convex, non-decreasing function ß is called an Orlicz function if for 𝑥 > 0 such 

that ß(0) = 0 and ß(𝑥) > 0 for 𝑥 > 0 and ß(𝑥) →  ∞ as 𝑥 → ∞. 

 

A function is referred to as a modulus function if the convexity of the Orlicz function is 

substituted by ß(𝑥 + 𝑦) ≤ ß(𝑥) + ß(𝑦). 
 

      An Orlicz function ß is said to satisfy Ϫ2 condition for all values u,if there exits Ҝ>0, such 

that ß(2𝑢) ≤ Ҝß(𝑢), 𝑢 ≥ 0. 

 

Lindenstrauss and Tzafriri [32] used the idea of Orlicz function to construct the sequence space 

 

ℓß = {𝑥ƛ ∈ 𝑤:∑ß(
|𝑥ƛ|

𝜌
)

∞

ƛ=1

< ∞: for some 𝜌 > 0} 
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 The space ℓß becomes a Banach space, with the norm 

 

‖𝑥‖ = {𝑖𝑛𝑓 𝜌 > 0:∑ß(
|𝑥ƛ|

𝜌
)

∞

ƛ=1

≤ 1} 

 

 

which is called an Orlicz sequence space 

 

A complex sequence whose ƛth term is 𝑥ƛ denoted by (𝑥ƛ) or simply x. Let Z1 be the set of all 

finite sequence. Letℓ∞, c and c0 be the sequence space of bounded, convergent and null 

sequences of 𝑥 = (𝑥ƛ)respectively. In respect of  ℓ∞, c and c0 we have  ‖𝑥‖ = 𝑠𝑢𝑝
ƛ
|𝑥ƛ|, where 

𝑥 = (𝑥ƛ) ∈ ℓ∞ ⊂ 𝑐 ⊂ 𝑐0.A sequence 𝑥 = (𝑥ƛ) is called analytic sequence if 𝑠𝑢𝑝
ƛ
|𝑥ƛ|

1

ƛ < ∞. The 

vector space of all analytic sequences will be denoted by Z2. Asequence 𝑥 = (𝑥ƛ) is called gai 

sequence if (ƛ! |𝑥ƛ|)
1

ƛ → 0, as ƛ → ∞.The vector space of all gai sequences will be denoted by 

Z3 

 

Definition 2.2: An interval number based sequence �̅�= (�̅�ƛ) is referred to as gai sequence if 

(ƛ! |𝑥ƛ|)
1

ƛ → 0, as ƛ → ∞. 

A sequence 𝑥 = (𝑥ƛ) is called analytic sequence of interval number if 𝑠𝑢𝑝
ƛ
|𝑥ƛ|

1

ƛ < ∞. 

Kizmaz [5] defined the difference sequence space for crisp set. This concept further  

generalized by Tripathy and Esi [19 ] as follows: 

 

   Let m 0 be an integer then Z1(Ϫ𝑚) ={(xƛ) ∈ 𝑤: (Ϫ𝑚𝑥ƛ) ∈ Z1}, for Z1=ℓ∞, c and c0. Where 

Ϫ𝑚𝑥ƛ = 𝑥ƛ - 𝑥ƛ+m, for all ƛ𝑁 and they showed that these are Banach spaces under the norm 

‖𝑥‖Ϫ𝑚= ∑ |𝑥𝑟|
𝑚
𝑟=1  + 

sup
ƛ
|Ϫ𝑚𝑥ƛ|. For m =1, the spacesℓ∞(Ϫ), c(Ϫ) and c0(Ϫ) are studied by 

Kizmaz [5]. 
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 In this paper using the difference operator Ϫ𝑚 and Orlicz functions we introduce the 

following sequence space 

 

Ὕ(Ϫ𝑚) ={(𝑥ƛ) ∈ 𝑊: ß(𝑑 (ƛ (|Ϫ𝑚𝑥ƛ|)
1

ƛ , 0)) → 0, as ƛ → ∞}

 
3. Results: 

Theorem 3.1: The spacesὝ(Ϫ𝑚)is complete metric space with the following metric 

𝜌(𝑥, y) = 𝑑(𝑥1, 𝑦1) + 𝑠𝑢𝑝
ƛ
[ß(𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ|, |Ϫ𝑚𝑦ƛ|))

1
ƛ))] 

Proof: Let(𝑥𝑖) be a Cauchy sequence in Ὕ(Ϫ𝑚) such that         

(𝑥𝑖) = (𝑥ƛ
𝑖) = (𝑥1

𝑖 , 𝑥2
𝑖 , 𝑥3

𝑖 , . . . . . . ) ∈ Ὕ(Ϫ𝑚), for each 𝑖 ∈ 𝑁. Then for a given ε >0, there 

exists𝑛0 ∈ 𝑁. 

𝜌(𝑥𝑖, 𝑥𝑗) = 𝑑(𝑥1
𝑖 , 𝑥1

𝑗
) + 𝑠𝑢𝑝

ƛ
[ß(𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ

𝑖|, |Ϫ𝑚𝑥ƛ
𝑗
|))

1
ƛ
))] < 𝜀

 

for all 𝑖, 𝑗 ≥ 𝑛0 

Then 𝑑(𝑥1
𝑖 , 𝑥1

𝑗
) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0    . . . . (1.1) 

ß [𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|))

1

ƛ
)] < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0    . . . . (1.2) 

⇒ 𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|))

1
ƛ
) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 

⇒ ƛ 𝑑 ((|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|)
1
ƛ) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 

⇒ 𝑑 ((|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|)
1
ƛ) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 

⇒ (𝑑(|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|))

1
ƛ
< 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 

⇒ 𝑑(|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ

𝑗
|) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 

⇒ 𝑑(Ϫ𝑚𝑥ƛ
𝑖 , Ϫ𝑚𝑥ƛ

𝑗
) < 𝜀, for all 𝑖, 𝑗 ≥ 𝑛0 
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Now (𝑥1
𝑖) and (Ϫ𝑚𝑥ƛ

𝑖) for all ƛ ∈ 𝑁 are Cauchy sequence in IR. Since IR is complete, so  

(𝑥1
𝑖) and (Ϫ𝑚𝑥ƛ

𝑖) for all ƛ ∈ 𝑁 are convergent inIR. 

 

   Let                     lim 
𝑖→∞

𝑥1
𝑖 = 𝑥1 . . . . . . . . . . . . . . .  (1.3) 

and                        lim 
𝑖→∞

Ϫ𝑥1
𝑖 = 𝑧ƛfor all ƛ ∈ 𝑁    . . . . . . . . . (1.4) 

 

From  (1.3) and (1.4) we have 

 

𝑙𝑖𝑚
𝑖→∞
 𝑥ƛ
𝑖 = 𝑥ƛ for all  ƛ ∈ 𝑁. 

Now fix     𝑖 ≥ 𝑛0 and let 𝑗 → ∞ in (1.1) and (1.2) 

 

     We have  

                   𝑑(𝑥1
𝑖 , 𝑥1) < 𝜀 and  𝑑 ((ƛ(|Ϫ𝑚𝑥ƛ

𝑖|, |Ϫ𝑚𝑥ƛ|))

1

ƛ
) < 𝜀, for all 𝑖 ≥ 𝑛0  . . . (1.5) 

which gives 

𝜌(𝑥𝑖 , 𝑥) < 𝜀 for all 𝑖 ≥ 𝑛0 

ie𝑥𝑖 → 𝑥,    as  𝑖 → ∞ 

 

Now we shall show that 𝑥 ∈ Ὕ(Ϫ𝑚). 
 

From   (1.5) for all 𝑖 ≥ 𝑛0 

𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ
𝑖|, |Ϫ𝑚𝑥ƛ|))

1
ƛ
) < 𝜀, 

Again for all 𝑖 ∈ 𝑁, 

𝑥𝑖 = (𝑥ƛ
𝑖) ∈ Ὕ(Ϫ𝑚) 

 

 

⇒ 𝑑 ((|Ϫ𝑚𝑥ƛ
𝑖|, 0)

1
ƛ) < ∞, 
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Now for all 𝑖 ≥ 𝑛0 we have 

 

⇒ 𝑑 ((|Ϫ𝑚𝑥ƛ|, 0)
1
ƛ) < 𝑑 ((|Ϫ𝑚𝑥ƛ|, |Ϫ𝑚𝑥ƛ

𝑖|)
1
ƛ) + ((|Ϫ𝑚𝑥ƛ

𝑖|, 0)
1
ƛ) < ∞, 

 

Hence  𝑥 ∈ Ὕ(Ϫ𝑚). This proves the completeness of Ὕ(Ϫ𝑚). 
 

Theorem 3.2: The spaces Ὕ(Ϫ𝑚)  is closed under the operation of addition and scalar 

multiplication  

 

Proof : 

(i) Let 𝑥ƛ ∈ Ὕ(Ϫ𝑚) and 𝑐 ∈  IR 

Then 

ß [𝑑 ((ƛ 𝑐|Ϫ𝑚𝑥ƛ|)
1
ƛ , 0)]

 
≤ 𝑚𝑎𝑥( 1, 𝑐

1
ƛ)ß [𝑑 ((ƛ|Ϫ𝑚𝑥ƛ|)

1
ƛ , 0)]

 
 

= 𝑚𝑎𝑥( 1, 𝑐
1
ƛ). 0

  

= 0

  

(ii) 

Let         𝑥ƛ, 𝑦ƛ ∈ Ὕ(Ϫ𝑚) then 

 ß [𝑑 ((ƛ (|Ϫ𝑚𝑥ƛ| ⊕ |Ϫ𝑚𝑦ƛ|))
1
ƛ , 0)]

 
≤ Ҝ [ß [𝑑 ((ƛ |Ϫ𝑚𝑥ƛ|)

1
ƛ , 0)] + ß [𝑑 ((ƛ |Ϫ𝑚𝑦ƛ|)

1
ƛ , 0)]]

 
= 0

  

Hence   𝑥ƛ⊕𝑦ƛ ∈ Ὕ(Ϫ𝑚) 
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Theorem 3.3: The spaces Ὕ(Ϫ𝑚) is Solid. 

 

Proof: Let 𝑥 = (𝑥ƛ) ∈ Ὕ(Ϫ𝑚) and  𝑦 = (𝑦ƛ) ∈ Ὕ(Ϫ𝑚) be fuzzy sequence such that  |𝑦ƛ| ≤
|𝑥ƛ| for allƛN. Then 

 

ß [𝑑 ((ƛ|Ϫ𝑚𝑥ƛ|)
1
ƛ , 0)] → 0, as ƛ → ∞ 

and  

 

 

ß [𝑑 ((ƛ|Ϫ𝑚𝑦ƛ|)
1
ƛ , 0)] ≤ ß [𝑑 ((ƛ|Ϫ𝑚𝑥ƛ|)

1
ƛ , 0)] → 0, as ƛ → ∞ 

 
 

Thus𝑦 = (𝑦ƛ) ∈ Ὕ(Ϫ𝑚) is solid. This completes the proof. 

 

Theorem 3.4: The spaces Ὕ(Ϫ𝑚)  is not Symmetric. 

 

Proof : Example 1.  Let  𝑚 = 2 and  

 

Consider the sequence 

 

𝑥ƛ = (1, 2, 3, 4, 5,  6, . . . . .) 
 

Then  𝑥ƛ ∈ Ὕ(Ϫ𝑚). 
 

Now if  𝑦ƛ be the rearrangement of  𝑥ƛ defined by 

𝑦ƛ = (1, 7, 3, 2, 5,  4, 6, . . . .) 
Then  𝑦ƛ ∉ Ὕ(Ϫ𝑚). 
 

Therefore, the spaces Ὕ(Ϫ𝑚)is not Symmetric. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

65 
 

 

 

 

 

 

Theorem 3.5:  The spaces Ὕ(Ϫ𝑚)  is not convergence free 

 

Proof: Example 2. For each ƛ ∈ 𝑁 and m=1 let us consider the sequences 

 

𝑥ƛ =[−
1

ƛ
,   
1

ƛ
]and 

 

𝑥ƛ+1 = [−
1

ƛ + 1
,
1

ƛ + 1
] 

 

Ϫ𝑥ƛ = [−
1

ƛ
−

1

ƛ + 1
,
1

ƛ
+

1

ƛ + 1
] 

 

lim
ƛ→∞

Ϫ𝑥ƛ = 0 

 

                                 Thus    𝑥ƛ ∈Ὕ(Ϫ𝑚). 
But  

𝑦ƛ = [−ƛ, ƛ] and    𝑦ƛ+1 = [−(ƛ + 1), (ƛ + 1)] 
Then  

Ϫ𝑦ƛ = [−(2ƛ + 1), (2ƛ + 1)] 
 

Therefore 𝑦ƛ ∉Ὕ(Ϫ𝑚) 
Hence the sequence spaceὝ(Ϫ𝑚)is not convergence frees. 

Which complete the result. 

4. Conclusions: We have examined some features of Difference Gai Sequences of Interval 

numbers with the Orlicz function in this article. Using the Orlicz function, we examine the 

Completeness, Solidness, Symmetricity and Convergence free of Difference Gai Sequences of 

Interval numbers. This concept will benefit the workers.  
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1.Introduction 

Freedman et al. [6] did the first research on lacunary sequences. They investigated strongly 

Ces�̀�ro summable and strongly lacunary convergent sequences, taking consideration of a 

general lacunary sequence 𝜃, and they identified connections among the two types of classes 

of sequences. Researchers Ercan et al. [5], Gumus [7], Tripathy and Et [12], Dowari and 

Triptahy [3,4] have all investigated further lacunary sequences. Recently, generalized 

difference lacunary weak convergence of sequences was investigated by Tamuli and Tripathy 

[14,15]. 

The idea of weak convergence, first proposed by Banach [1], is interesting but has several 

limitations. Numerous conclusions related to these ideas are generally only valid for separable 

space. Many others, like Mahanta [11] and Tripathy, have studied vector-valued sequence 

spaces in recent years. 
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2. Definition and Preliminaries 

Let 𝜃 = (𝑘𝑠) a sequence of positive integers, then it is called lacunary if 𝑘0 = 0,0 < 𝑘𝑠 <

𝑘𝑠+1 and ℎ𝑠 = 𝑘𝑠 − 𝑘𝑠−1 → ∞ as 𝑠 → ∞. The intervals determined by 𝜃 will be denoted by 

𝐼𝑠 = (𝑘𝑠−1, 𝑘𝑠) and 𝑞𝑠 = 𝑘𝑠/𝑘𝑠−1, ∀𝑠 ∈ 𝑁. 

According to Freedman et al., the space of lacunary strongly convergent sequence 𝑁𝜃 was 

defined as follows. [6] 

𝑁𝜃 = {𝑥: lim
𝑠→∞

 
1

ℎ𝑠
∑ 

𝑖∈𝐼𝑠

  |𝑥𝑖 − 𝐿| = 0, for some , 𝐿} 

Difference sequence was introduced by Kizmaz [8]. After that, as explained in [13], the 

generalized difference sequence spaces were discussed by Esi, Tripathy, and Sarma in the 

following ways: 

Let 𝑝, 𝑞 ≥ 0 be fixed integers, 

𝑍(Δ𝑞
𝑝) = {𝑥 = (𝑥𝑘) ∈ 𝜔: Δ𝑞

𝑝𝑥 = (Δ𝑞
𝑝𝑥𝑘) ∈ 𝑍} 

for 𝑍 = ℓ∞, 𝑐 and 𝑐0; where Δ𝑞
𝑝𝑥𝑘 = Δ𝑞

𝑝−1𝑥𝑘 − Δ𝑞
𝑝−1𝑥𝑘+𝑞 and Δ𝑞

0𝑥𝑘 = 𝑥𝑘, ∀𝑘 ∈ ℕ. The 

binomial representation of this generalized difference operator is shown below: 

Δ𝑞
𝑝𝑥𝑘 =∑  

𝑝

𝑣=0

  (−1)𝑣 (
𝑝

𝑣
) 𝑥𝑘+𝑞𝑣, for all 𝑘 ∈ ℕ (1) 

The spaces ℓ∞(Δ), 𝑐(Δ), and 𝑐0(Δ), introduced and investigated by Kizmaz [8], are represented 

by these spaces for 𝑝 = 1 and 𝑞 = 1. The spaces ℓ∞(Δ
𝑝), 𝑐(Δ𝑝) and 𝑐0(Δ

𝑝), which were 

introduced and examined by Et and Colak [2], are represented by these spaces for 𝑞 = 1. The 

spaces ℓ∞(Δ𝑞), 𝑐(Δ𝑞) and 𝑐0(Δ𝑞), which were introduced and examined by Tripathy and Esi 

[13], are represented by these spaces for 𝑝 = 1. 
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The space of sequences 𝑍(Δ𝑞
𝑝) for 𝑍 = ℓ∞, 𝑐 and 𝑐0 are Banach spaces, for the given norm 

∥ 𝑥 ∥𝑤=∑  

𝑝𝑞

𝑖=1

|𝑥𝑖| + sup
𝑘
 |Δ𝑞
𝑝𝑥𝑘|, for 𝑝 ≥ 1, 𝑞 ≥ 1 

A function ℋ: [0,∞) → [0,∞) with ℋ(0) = 0,ℋ(𝑥) > 0 for 𝑥 > 0, and ℋ(𝑥) → ∞, as 

𝑥 → ∞ is called an Orlicz function. It is continuous, non-decreasing, and convex. 

The concept of the Orlicz function was applied by Lindenstrauss and Tzafriri [9] to create the 

given sequence space. 

ℓℋ = {(𝑥𝑖) ∈ 𝜔:∑  

∞

𝑖=1

 ℋ (
|𝑥𝑖|

𝜌
) < ∞, for some 𝜌 > 0} 

where the class of every sequence is denoted by 𝜔. 

For the given norm the sequence space ℓℋ 

∥ 𝑥 ∥= inf {𝜌 > 0:∑  

∞

𝑖=1

 ℋ (
|𝑥𝑖|

𝜌
) ≤ 1} 

becomes a Banach space, also known as an Orlicz sequence space. Tripathy and Esi [13], 

Parashar and Choudhury [10], Tripathy and Mahanta [11], and many researchers have 

investigated different types of Orlicz sequence spaces. 

Definition 2.1. A sequence (𝑥𝑖) is said to be weakly convergent in a norm linear space 𝑋, if 

there is an element 𝐿 ∈ 𝑋 such that 

lim
𝑖→∞
 𝑓(𝑥𝑖 − 𝐿) = 0, for all 𝑓 ∈ 𝑋′ 

Here,  𝑋′ denotes the continuous dual space of 𝑋. 
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Definition 2.2. A sequence (𝑥𝑖) in a norm linear space 𝑋 is lacunary weakly convergent to 

𝐿 ∈ 𝑋 if 

lim
𝑠→∞

 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

𝑓(𝑥𝑖 − 𝐿) = 0 

for all 𝑓 ∈ 𝑋′, where 𝑋′ is the continuous dual of 𝑋.  

In this paper, the term 𝒟𝜃
𝑤 refers to the lacunary weak convergent. 

Definition 2.3. If (𝛼𝑖𝑥𝑖) ∈ 𝐸 whenever (𝑥𝑖) ∈ 𝐸, for all sequences of scalar (𝛼𝑖) with |𝛼𝑖| ≤

1, ∀𝑖 ∈ ℕ, then the sequence space 𝐸 is said to be solid 

Definition 2. 4. The sequence space 𝐸 ⊂ 𝜔 is called as monotone if it contains all of the pre-

images of its step spaces. 

Definition 2.5. The sequence space 𝐸 ⊂ 𝜔 is known as symmetric if it satisfies the condition 

(𝑥𝑖) ∈ 𝐸 implies (𝑥𝜋(𝑖)) belongs to 𝐸, where 𝜋 is a permutation of ℕ. 

Definition 2.6. The Δ2 − condition is satisfied by an Orlicz function ℋ if there is a constant 

𝑇 > 0 such that, for each 𝑧,ℋ(2𝑧) ≤ 𝑇ℋ(𝑧), for 𝑧 ≥ 0. 

3. Main Result 

In this section we introduce the following classes of sequences and establish result invloving 

them. 

[𝒟𝜃
𝑤 ,ℋ,]0 = {𝑥 = (𝑥𝑘): lim

𝑠→∞
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔
) = 0, for some 𝑔 > 0}

[𝒟𝜃
𝑤 ,ℋ,]1 = {𝑥 = (𝑥𝑘): lim

𝑠→∞
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘 − 𝐿)|

𝑔
) = 0, for some 𝐿 and 𝑔 > 0}

[𝒟𝜃
𝑤 ,ℋ,]∞ = {𝑥 = (𝑥𝑘): lim

𝑠→∞
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔
) < ∞, for some 𝑔 > 0}
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We state, without proof, the following result. 

Theorem 3. 1. The classes of sequences [𝒟𝜃
𝑤, ℋ,]0, [𝒟𝜃

𝑤, ℋ,]1 and [𝒟𝜃
𝑤 ,ℋ,]∞ are linear 

spaces. 

Theorem 3.2. For any Orlicz function ℋ, [𝒟𝜃
𝑤, ℋ,]∞ is a normed linear space for the given 

norm 

𝜉(𝑥) = ∑𝑖=1
𝑝  |𝑓(𝑥𝑖)| + inf {𝑔 > 0: sup𝑠  

1

ℎ𝑠
∑𝑘∈𝐼𝑠  ℋ (

|𝑓(𝑥𝑘)|

𝑔
) ≤ 1, 𝑠 = 1,2,3, … } ; 

where the infimum is taken over all 𝑔 > 0. 

 

Proof: Clearly, 𝜉(𝑥) = 𝜉(−𝑥), 𝑥 = 𝜃 implies 𝑥𝑘 = 0 and as such we have ℋ(𝜃) = 0. 

Therefore 𝜉(𝜃) = 0. Conversely support that 𝜉(𝑥) = 0, then 

 ∑  

𝑝

𝑖=1

  |𝑓(𝑥𝑖)| + inf {𝑔 > 0: sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔
) ≤ 1, 𝑠 = 1,2,3, …} = 0 

 

⇒∑ 

𝑝

𝑖=1

  |𝑓(𝑥𝑖)| = 0 and inf {𝑔 > 0: sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔
) ≤ 1, 𝑠 = 1,2,3, …} = 0 

From the first part we have 

𝑥𝑖 = 𝜃‾, for 𝑖 = 1,2,3, … ,𝑚 

where, 𝜃‾ is the zero element. In accordance with this second section, there exists some 

𝑔𝜀(0 < 𝑔𝜀 < 𝜀) for a given 𝜀 > 0. such that 

sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔𝜀
) ≤ 1

⇒ ∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓(𝑥𝑘)|

𝑔𝜀
) ≤ 1
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Thus, 

∑  

𝑘∈𝐼𝑠

ℋ(
|𝑓(𝑥𝑘)|

𝜀
) ≤ ∑  

𝑘∈𝐼𝑠

ℋ(
|𝑓(𝑥𝑘)|

𝑔𝜀
) ≤ 1 

Suppose 𝑥𝑐𝑖 ≠ 𝜃
‾, for each 𝑖. Taking 𝜀 → 0, we have 

|𝑓(𝑥𝑐𝑖)|

𝜀
→ ∞. It follows that 

1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

ℋ(
|𝑓(𝑥𝑘)|

𝜀
) → ∞ 

as 𝜀 → 0, for 𝑐𝑖 ∈ 𝐼𝑠. Hence, we arrive at a contradiction. Therefore, 𝑥𝑐𝑖 = 𝜃‾, for each 𝑖 ∈

𝑁. Thus 𝑥𝑘 = 𝜃‾, ∀𝑘 ∈ 𝑁. 

Therefore, it follows from (1) and (2) that 𝑥𝑘 = 𝜃‾, ∀𝑘 ∈ 𝑁. Hence 𝑥 = 𝜃. Next let 𝑔1, 𝑔2 > 0 

such that 

sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

ℋ(
|𝑓(𝑥𝑘)|

𝑔1
) ≤ 1 

and 

sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

ℋ(
|𝑓(𝑥𝑘)|

𝑔2
) ≤ 1 

Let 𝑔 = 𝑔1 + 𝑔2, then we have 

sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

ℋ(
∣ 𝑓((𝑥𝑘 + 𝑦𝑘) ∣

𝑔
) ≤ 1 
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Let 𝜑 ≠ 0, then 

𝜉(𝜑𝑥) =∑  

𝑝

𝑖=1

|𝜑𝑥𝑖| + inf {𝑔 > 0: sup
𝑠
 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

 ℋ (
|𝑓((𝜑𝑥𝑘))|

𝑔
)  ≤ 1, 𝑠 = 1,2,3, …} 

≤ |𝜑|𝜉𝑓(𝑥) 

This completes the theorem's proof. 

Theorem 3.3. Let ℋ1 and ℋ2 be Orlicz functions satisfying Δ2 − condition. Then 

(i) [𝒟𝜃
𝑤 ,ℋ1,]𝒢 ⊆ [𝒟𝜃

𝑤 ,ℋ2.ℋ1,]𝒢. 

(ii) [𝒟𝜃
𝑤 ,ℋ1,]𝒢 ∩ [𝒟𝜃

𝑤 ,ℋ2,]𝒢 ⊆ [𝒟𝜃
𝑤 ,ℋ1 +ℋ2,]𝒢, where 𝒢 = 0, and ∞. 

Proof We prove it in the case of 𝒢 = 0, we will apply same methods to the remaining cases. 

(i) Let (𝑥𝑘) ∈ [𝒟𝜃
𝑤 ,ℋ1,]0. Then there exists   𝑔 > 0 such that 

lim
𝑠→∞

 
1

ℎ𝑠
∑  

𝑘∈𝐼𝑠

ℋ1 (
|𝑓(𝑥𝑘)|

𝑔
) = 0 

Let 0 < 𝜀 < 1 and 0 < 𝛿 < 1 such that ℋ2(𝑡) < 𝜀, for 0 ≤ 𝑡 < 𝛿. 

Let 𝑦𝑘 = ℋ1 (
|𝑓(𝑥𝑘)|

𝑔
) and consider 

∑  

𝑘∈𝐼𝑠

ℋ2(𝑦𝑘) =∑  

1

ℋ2(𝑦𝑘) +∑  

2

ℋ2(𝑦𝑘) 

where the summations are over 𝑦𝑘 > 𝛿 in the second summation and over 𝑦𝑘 ≤ 𝛿 in the first. 

Since, 

1

ℎ𝑠
∑ 

1

ℋ2(𝑦𝑘) < ℋ2(2)
1

ℎ𝑠
∑ 

1

(𝑦𝑘) 
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for 𝑦𝑘 > 𝛿, we have 

𝑦𝑘 < 1 +
𝑦𝑘
𝛿

 

Given that ℋ2 is convex and non-decreasing, it follows thatSince, ℋ2 is nondecreasing and 

convex, it follows that 

ℋ2(𝑦𝑘) <
1

2
ℋ2(2) +

1

2
ℋ2 (

2𝑦𝑘
𝛿
) 

Since, ℋ2 satisfies 𝛿2 − conditions, we have 

ℋ2(𝑦𝑘) = 𝐾
𝑦𝑘
𝛿
ℋ2(2) 

Hence, 

1

ℎ𝑠
∑ 

2

ℋ2(𝑦𝑘) ≤ max(1, 𝐾𝛿
−1ℋ2(2))

1

ℎ𝑠
∑ 

2

𝑦𝑘 

Taking limit as 𝑠 → ∞, from (3) and (4) we have 

(𝑥𝑘) ∈ [𝒟𝜃
𝑤 ,ℋ2.ℋ1, Δ]0 

Similar proof can be shown for the other cases. 

(ii) The proof is obvious and omitted. 

Result 3.1. The space [𝒟𝜃
𝑤 ,ℋ, Δ]𝒢, where, in general, 𝒢 = 0,1,∞ are not solid.  
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To show that the spaces [𝒟𝜃
𝑤 ,ℋ, Δ]1, [𝒟𝜃

𝑤 ,ℋ, Δ]∞ are not solid, in general, we illustrate the 

folowing examples. 

Example 1. Considering the function 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑅, and for 𝑋 = 𝑅. Let us consider the 

sequence (𝑥𝑘), defined by 𝑥𝑘 = 1/𝑘, ∀𝑘 ∈ 𝑁. Let ℋ(𝑥) = 𝑥𝑟 , 𝑟 ≥ 1 and the lacunary 

sequence 𝜃 = (2𝑠). Then (𝑥𝑘) ∈ [𝒟𝜃
𝑤 ,ℋ, Δ]1 and (𝑥𝑘) ∈ [𝒟𝜃

𝑤, ℋ, Δ]∞. Let (𝛾𝑘) = ((−1)
𝑘), 

then (𝛾𝑘𝑥𝑘) ∉ [𝒟𝜃
𝑤 ,ℋ, Δ]1 and (𝛾𝑘𝑥𝑘) ∉ [𝒟𝜃

𝑤 ,ℋ, Δ]∞. 

We consider the following example to show that [𝒟𝜃
𝑤 ,ℋ, Δ]0 is not solid in general. 

Example 2. Taking 𝑋 = 𝑅 and the function 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑅.  Let us now consider the 

sequence (𝑥𝑘), which is defined as 𝑥𝑘 = 1, ∀𝑘 ∈ 𝑁. Assume that ℋ(𝑥) = 𝑥𝑟 , 𝑟 = 2, and that 

the lacunary sequence is 𝜃 = (2𝑠). Let (𝛾𝑘) = ((−1)
𝑘), ∀𝑘 ∈ 𝑁. Then, (𝛾𝑘𝑥𝑘) ∉

[𝒟𝜃
𝑤 ,ℋ, Δ]0. 

Thus, the set [𝒟𝜃
𝑤 ,ℋ, Δ]0 is not solid. 

Result 3.2. The spaces [𝒟𝜃
𝑤 ,ℋ, Δ]𝒢, where 𝒢 = 0,1,∞ are not symmetric in general. 

The following example is given to support the previous result. 

Example 3. Let 𝑋 = 𝑅 and the function 𝑓(𝑥) = 𝑥, ∀𝑥 ∈ 𝑅 be considered. Let ℋ(𝑥) = 𝑥, and 

a lacunary sequence 𝜃 = (2𝑠). Considering the sequence (𝑥𝑘), we can define it as 𝑥𝑘 =

𝑘, ∀𝑘 ∈ 𝑁 is in [𝒟𝜃
𝑤 ,ℋ, Δ]0. After rearranging the sequence (𝑥𝑘) as follows, (𝑦𝑘) will be 

considered as 

𝑦𝑘 = (𝑥1, 𝑥4, 𝑥5, 𝑥8, 𝑥9. , . . ) 

Then (𝑦𝑘) ∉ [𝒟𝜃
𝑤 ,ℋ, Δ]𝒢, where 𝒢 = 0,1,∞ are not symmetric in general. Hence the spaces 

[𝒟𝜃
𝑤 ,ℋ, Δ]𝒢, where 𝒢 = 0,1,∞ are not symmetric in general. 
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Proposition 3.1. Let a lacunary sequence 𝜃 = (𝑘𝑠) with lim inf𝑠  𝜇𝑠 > 1, then for any Orlicz 

function ℋ, [Ω,ℋ, Δ ] 0 ⊆ [𝒟𝜃
𝑤 ,ℋ, Δ]0, where 

[Ω,ℋ, Δ]0 = {𝑥 = (𝑥𝑘): lim
𝑛→∞

 
1

𝑛
∑  𝑛
𝑖=1  ℋ (

|𝑓(Δ𝑥𝑘)|

𝑔
) = 0, for some 𝑔 > 0}. 

Proposition 3.2. Let a lacunary sequence 𝜃 = (𝑘𝑠) with lim sup𝑠  𝜇𝑠 < ∞, then for any Orlicz 

function ℋ, [𝒟𝜃
𝑤, ℋ, Δ]0 ⊆ [Ω,ℋ, Δ]0. 

Proposition 3.3. Let a lacunary sequence 𝜃 = (𝑘𝑠) with 1 < lim inf𝑠  𝜇𝑠 ≤ lim sup𝑠  𝜇𝑠 < ∞, 

then for any Orlicz function ℋ, [𝒟𝜃
𝑤 ,ℋ, Δ]0 = [Ω,ℋ, Δ]0. 
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1. Introduction 

The idea of non-Newtonian numbers was presented by Grossman and Katz [1] in 1972 as an 

alternative to classical calculus, often known as Newtonian calculus. Çakmak and Basar [2] 

followed next, defining the field ℝ(𝑁) of non-Newtonian real numbers and introducing the 

notions of norm, non-Newtonian metric, and several well-known inequalities following them. 

Cakmak and Basar [3] classified all classes of non-Newtonian numbers that are all sequences, 

absolutely 𝑝- summable, bounded, convergent, and null. 𝜔𝑁 ℓ𝑝
𝑁, ℓ∞

𝑁  , 𝑐𝑁 , and 𝑐0
𝑁, and are the 

symbols that represent these classes, respectively. It was demonstrated by Gungor [4] that the 

sequence of spaces ℓ∞
𝑁  and 𝑙𝑝

𝑁 have non-Newtonian strictly convexity and non-Newtonian 

uniform convexity, also defined some geometric properties of the non-Newtonian sequence 

spaces ℓ𝑝(N).  

 

 

 

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

80 
 

A bijective function 𝛼 with a domain of R and a range that is a subset of R is called a generator. 

Consider the following: ℝ(𝑁) = {𝛼(𝑥): 𝑥 ∈ 𝑅}. ℝ(𝑁+) represents the 𝛼 - positive real numbers, 

which are the numbers x in ℝ(𝑁) for which 0̇ < 𝑥, and 𝛼-negative real numbers, denoted by 

ℝ(𝑁)−, are the numbers x for which 0̇ > 𝑥.  We denote 𝛼(𝑛) = �̇� for each 𝑛 ∈ ℤ. The arithmetic 

with the operations described as follows and whose domain is ℝ(𝑁) is called 𝛼-arithmetic.  

Considering 𝑥, 𝑦 ∈ ℝ and for any generator 𝛼, 

α-addition                       x+̇y =α {𝛼−1(𝑥)  + 𝛼−1(𝑦)}   

α-subtraction                  x−̇y = α {𝛼−1(𝑥) − 𝛼−1(𝑥)}  

α-multiplication              x ×̇y = α {𝛼−1(𝑥) × 𝛼−1(𝑦)}  

α-division                        x/̇y = α {𝛼−1(𝑥)/ 𝛼−1(𝑦 )},  𝛼−1(𝑦) ≠ 0   

α-order                            x ≤̇ 𝑦 ⇔ 𝛼−1(𝑥) ≤  𝛼−1(𝑦)    

 

The set ℝ(𝑁), with the above operations, forms a complete order field.  

The preliminary work on lacunary sequences was done by Freedman et al. [5]. With 

consideration for a general lacunary sequence θ, they examined strongly lacunary convergent 

sequences and strongly Cesaro summable sequences, and discovered correlations between the 

classes of the two types of sequences. In addition, Ercan et al. [6], Gumus [7] explored lacunary 

sequences. Colak et al. [8], Tripathy and Et [9], Dowari and Tripathy [10]. Karakaya [11] 

developed some conclusions about the space ℓ𝑝,𝜃 and addressed some inclusion link between 

ces(p) and ℓ𝑝,𝜃.   

Let X be a Banach space over the non-Newtonian field ℝ(𝑁), and ‖ ⋅ ‖𝑁: 𝑋 → ℝ(𝑁)+ ∪ {0̇} be 

a function satisfying the non-Newtonian norm axioms: For all 𝑥, 𝑦 ∈ 𝑋, and 𝜂 ∈ ℝ(𝑁), 

(1) ‖𝑥‖𝑁 = 0̇ ⟺ 𝑥 = 0̇ 

(2) ‖𝜂 ×̇ 𝑥‖𝑁 = 𝜂 ×̇ ‖𝑥‖𝑁 

(3) ‖𝑥+̇𝑦‖𝑁 ≤̇ ‖𝑥‖𝑁+̇‖𝑦‖𝑁.  

Then (𝑋, ‖𝑥‖𝑁) is said to be a non-Newtonian norm space. 
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Let X be a Banach space over the non-Newtonian field ℝ(𝑁), and <,>𝑁: 𝑋 ×̇ 𝑋 → ℝ(𝑁)  

be a function satisfying the non-Newtonian inner product axioms: 

 For all 𝑥, 𝑦 ∈ 𝑋, and 𝜂 ∈ ℝ(𝑁),  

(1) < 𝑥, 𝑦 >𝑁≥ 0̇, 

(2) < 𝑥, 𝑦 >𝑁= 0̇ iff 𝑥 = 𝑦, 

(3) < 𝜂 ×̇ 𝑥, 𝑦 >𝑁= 𝜂 ×̇< 𝑥, 𝑦 >𝑁, 

(4) < 𝑥+̇𝑧, 𝑦 >𝑁≤̇< 𝑥, 𝑦 >𝑁 +̇< 𝑧, 𝑦 >𝑁. 

Then (𝑋,<,>𝑁) is said to be a non-Newtonian norm space. 

2. Definition and Preliminaries: 

A sequence of positive integers 𝜃 = (𝑘𝑟) is said to be b a lacunary sequence if 𝑘0 = 0,0 <

𝑘𝑟 < 𝑘(𝑟+1) and ℎ𝑟 = 𝑘(𝑟+1) − 𝑘𝑟 → ∞, as 𝑟 → ∞. We denote 𝐼𝑟 = (𝑘𝑟−1, 𝑘𝑟) and 𝑞𝑟 =
𝑘𝑟

𝑘𝑟−1
. 

Definition 2.1. Let X be a Banach space over ℝ𝑁, and T be a linear bounded operator. Then 

the orbit at x is defined by [𝑥] = {𝑥, 𝑇(𝑥), 𝑇2(𝑥), … . , 𝑇𝑛(𝑥), … . } and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the 

set of all orbits of the sequence space X. 

 

Definition 2.2. An orbit {𝑥𝑘} is called Lyapunov stable if for each 𝜀 >̇ 0̇, there exists a 

𝛿 >̇ 0̇, for any initial point x such that ‖𝑥−̇𝑦‖𝑁 <̇ 𝛿 implies 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁 <̇ 𝜀, for all 𝑛 ≥ 0. 

Definition 2.3. An orbit {𝑥𝑘} is called lacunary-Lyapunov stable if for each 𝜀 >̇ 0̇, there 

exists a 𝛿 >̇ 0̇, for any initial point y in X such that ‖𝑥−̇𝑦‖𝑁 <̇ 𝛿 implies 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃 <̇ 𝜀 

                             i.e., 
1

ℎ𝑟
∑  𝑘∈𝐼𝑟   |𝑇

𝑛𝑥𝑘 − 𝑇
𝑛𝑦𝑘|𝑁 <̇ 𝜀, for all 𝑛 ≥ 0. 

Definition 2.4. An orbit {𝑥𝑘} is called asymptotic stable if it is Lyapunov stable and if 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑥0)‖𝑁 → 0̇, as 𝑛 → ∞. 
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Definition 2.5. An orbit {𝑥𝑘} is called lacunary-asymptotic stable if it is Lyapunov stable and 

if 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑥0)‖𝑁,𝜃 → 0̇, as 𝑛 → ∞

𝑖. 𝑒,
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 → 0̇, as 𝑛 → ∞. 

Definition 2.6. An orbit {𝑥𝑘} is called exponential stable if there exists contents 𝐶 >̇ 0̇ and 

0̇ <̇ λ <̇ 1̇ such that ‖𝑇𝑛(𝑥) − 𝑇𝑛(𝑥0)‖𝑁 ≤ 𝐶𝜆
𝑛‖𝑥 − 𝑥0‖𝑁, for all 𝑛 ∈ ℕ. 

Definition 2.7. An orbit {𝑥𝑘} is called lacunary-exponential stable if there exist constants 

𝐶 >̇ 0̇ and 0̇�̇� <̇ 1̇ such that 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑥0)‖𝑁,𝜃 ≤ 𝐶𝜆
𝑛‖𝑥−̇𝑥0‖𝑁,𝜃, for all 𝑛 ≥ 0 

 i.e., 
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 ≤ 𝐶𝜆

𝑛
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑥𝑘−̇𝑦𝑘|𝑁, for all 𝑛 ≥ 0.  

3. Main Results based on orbits of sequences under bounded linear operator 

Theorem 3.1. Let 𝑋 be a Banach space over ℝ𝑁 and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the set of all orbits 

of the sequence space 𝑋. Then the set 𝑉 is normed linear space with respect to the norm 

defined by 

‖[𝑥]‖𝑁 = sup
𝑘≥0
 ‖𝑇𝑘(𝑥)‖𝑁 −−−−−−−−− (1) 

Theorem 3.2. Let 𝑋 be a Banach space over ℝ𝑁, 𝑇 be a linear bounded operator and 𝑉 =

{[𝑥]: 𝑥 ∈ 𝑋} be the set of all orbits of the sequence space 𝑋. The following statements are 

held: then for each 𝑥 ∈ 𝑋 

(i) The orbit [𝑥] is neither open nor closed in general, 

(ii) The orbit [𝑥] is connected, 

(iii) The orbit [𝑥] is not compact. 
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Proof: (i) First, we prove that [𝑥] is not open, we consider 𝑥 = (1̇, 0̇, 0̇, 0̇, … , 0̇, … ), and 

𝑇𝑛(1̇, 0̇, 0̇, 0̇, … , 0̇, … ) = (0̇, 0̇, … 0̇, 1̇, 0̇, 0̇, … ), ( first n terms are zero ) 

such that ‖𝑇𝑛(𝑥)‖𝑁 = 1̇, for all 𝑛 ∈ ℕ. 

Then, for 𝜀 =
1

2
, and 𝑇𝑘(𝑥) be any element in orbit [𝑥], then there is an open set 𝑈𝜀 contains 

infinitely many elements [for separable sequence space ] except 𝑇𝑘(𝑥) and none of them 

belongs to the orbits [𝑥]. Hence, 𝑈𝜀 is not subset of [𝑥]. Therefore, the orbit [𝑥] is not open. 

To prove [𝑥] is not closed, we consider 𝑋 = (𝑙𝑝)
𝑁

 and T be a right-shift operator on X 

defined by 

𝑇𝑛(𝑥1, 𝑥2, … . , 𝑥𝑛, … ) = (0̇, … . 0̇, 𝑥1, 𝑥2, … . , 𝑥𝑛, … )( first n terms are zero) for all 𝑛 ≥ 0. 

Consider 𝑥 = (1̇, 0̇, 0̇, 0̇, … , 0̇, … ), Then 

𝑇𝑛(1̇, 0̇, 0̇, 0̇, … , 0̇, … ) = (0̇, 0̇, 0̇, … , 0̇, 1̇, 0̇, 0̇, … ), ( first n terms are zero ) 

Now, 

𝑇𝑛(1̇, 0̇, 0̇, 0̇, … , 0̇, … ) → (0̇, 0̇, 0̇, 0̇, … , 0̇, … ), as 𝑛 → ∞ 

Hence, the orbit [𝑥] does not contains (0̇, 0̇, 0̇, 0̇, … , 0̇, … ) i.e., non-Newtonian zero element. 

Therefore, the orbit [𝑥] is not closed. 

(ii) Suppose the orbit [𝑥] is not connected, then there are two non-empty open sets 𝑈 and 𝑉 

such that 

[𝑥] = 𝑈 ∪ 𝑉, with 𝑈 ∩ 𝑉 = 𝜙

𝑈‾ ∪ 𝑉 = 𝜙

𝑈 ∪ 𝑉‾  = 𝜙.
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There exists a natural number 𝑘0 ∈ ℕ such that 

𝑇𝑘0(𝑥) ∈ 𝑈 but 𝑇𝑘0+𝑖(𝑥) ∈ 𝑉, for all 𝑖 ∈ ℕ 

Therefore, U contains only finite number of elements, so it is not open set. This contradicts 

our assumption. Hence [𝑥] is connected. 

(iii) The orbit [𝑥] is not closed, this follows from the proof of (i). Therefore [𝑥] is not 

compact. 

 

Theorem 3.3. Let 𝑋 be a Banach space over ℝ𝑁, 𝑇 be a bounded linear operator with 

‖𝑇‖𝑁 < 1 and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits of the sequence space 𝑋. Then for any 

initial point 𝑦 ∈ 𝑋, the following statements are equivalent: 

(i) The orbit is lacunary Lyapunov stable at any point 𝑥 

(ii) The orbit is lacunary asymptotic stable at any point 𝑥 

(iii) The orbit is lacunary exponentially stable at any point 𝑥. 

Proof: (ii) ⟹ (i) is obvious. We prove that (i) ⟹ (ii). 

 First, we assume [𝑥] is lacunary Lyapunov-stable i.e., for each 𝜀 >̇ 0̇, there exists a 𝛿 >̇ 0̇, 

and an initial point y in X such that 

‖𝑥−̇𝑦‖𝑁,𝜃 <̇ 𝛿 ⟹ ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃 <̇ 𝜀 

Now, for all 𝑛 ≥ 0, we have 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃 ≤̇
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 

                                                                  ≤̇ ‖𝑇𝑛‖𝑁 ×̇
1

ℎ𝑟
∑  𝑘∈𝐼𝑟   |𝑥𝑘−̇𝑦𝑘|𝑁   

                                                                  ≤̇ ‖𝑇‖𝑁
𝑛 ×̇ ‖𝑥−̇𝑦‖𝑁,𝜃 

                                                                  ≤̇ ‖𝑇‖𝑁
𝑛 ×̇ 𝛿 
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As ‖𝑇‖𝑁 <̇ 1̇, then ‖𝑇‖𝑁
𝑛 → 0̇, as 𝑛 → ∞ 

 i.e., ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃 → 0̇, as 𝑛 → ∞ 

Therefore, (i) ⟺ (ii). 

(iii) ⟹ (ii) is obvious. Now, we prove (ii) ⟹ (iii): 

We assume [𝑥] is lacunary asymptotic-stable. Then for each 𝜖 > 0, there exists a constant 

𝐶 = 1̇ and 0̇ <̇<̇ 1̇, take ‖𝑇‖𝑁 = 𝜆 and an initial point y in X such that 

for 𝛿 =
𝜖

𝐶
, we obtain 

‖𝑥−̇𝑦‖𝑁,𝜃 <̇ 𝛿 ⟹ ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃  ≤̇
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 

                                                                 ≤̇ ‖𝑇𝑛‖𝑁 ×̇
1

ℎ𝑟
∑  𝑘∈𝐼𝑟   |𝑥𝑘−̇𝑦𝑘|𝑁 

                                                                 ≤̇ 𝐶 ×̇ ‖𝑇‖𝑁
𝑛 ×̇ ‖𝑥−̇𝑦‖𝑁,𝜃 

i.e., ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃 ≤̇ 𝐶 ×̇ 𝜆
𝑛 ×̇ ‖𝑥−̇𝑦‖𝑁,𝜃, for all 𝑛 ≥ 0. 

Therefore, [𝑥] is lacunary exponential-stable. Therefore, (ii) ⟺ (iii). 

Hence, (i) ⟺ (iii). 

Corollary 3.4. Let 𝑋 be a Banach space over ℝ𝑁 , 𝑇 be a bounded linear operator with 

‖𝑇‖𝑁 <̇ 1̇ and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits of the sequence space 𝑋. Then for any 

initial point 𝑦 ∈ 𝑋, the following statements are equivalent: 

(i) The orbit is Lyapunov stable at any point 𝑥 

(ii) The orbit is asymptotic stable at any point 𝑥 

(iii) The orbit is exponentially stable at any point 𝑥. 
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Corollary 3.5. Let 𝑋 be a Banach space over ℝ𝑁 , 𝑇 be a bounded linear operator with 

‖𝑇‖𝑁 = 1̇ and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits of the sequence space 𝑋. Then for any 

initial point 𝑦 ∈ 𝑋, then the following statements are held: 

(i) The orbit is Lyapunov stable at any point 𝑥 

(ii) The orbit is not asymptotic stable at any point 𝑥 

(iii) The orbit is not exponentially stable at any point 𝑥. 

Proof: (i) Let [𝑥] be an orbit. Then for each 𝜀 >̇ 0̇, there exists a 𝛿 = (𝜀) >̇ 0̇ and an initial 

point 𝑦 in 𝑋 such that ‖𝑥 − 𝑦‖𝑁 <̇ 𝛿 implies 

‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃  ≤̇
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 

                                                                   ≤̇ ‖𝑇𝑛‖𝑁 ×̇
1

ℎ𝑟
∑  𝑘∈𝐼𝑟   |𝑥𝑘−̇𝑦𝑘|𝑁 

                                                                    ≤̇ ‖𝑥−̇𝑦‖𝑁,𝜃 

                                                                    <̇ 𝜀, for all, 𝑛 ≥ 0                                                                                                                                         

(ii) Let X = (𝑙∞)
𝑁 be a normed space with sup-norm and T be a right shift operator on (𝑙∞)

𝑁 

i.e., 

𝑇𝑛(𝑥1, 𝑥2, … . , 𝑥𝑛, … ) = (0̇, …… , 0̇, 𝑥1, 𝑥2, … . , 𝑥𝑛, … ) (first n terms are zero), for all 𝑛 ∈ ℕ. 

Consider (1̇, 0̇, 0̇, 0̇, … , 0̇, … ) and 𝑦 = (0̇, −1, 0̇, 0̇, … , 0̇, … ) with 

‖𝑥‖𝑁 = 1̇, and ‖𝑦‖𝑁 = 1̇ 

Now, 

‖𝑥−̇𝑦‖𝑁 = 1̇ 

⟹ ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁 = ‖(0̇, 0̇, … , 0̇, 1̇, 1̇, 0̇, 0̇, … )‖𝑁 

= sup
𝑘
 |𝑥𝑘|𝑁 = 1̇ 
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Therefore ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁 ↛ 0̇, as 𝑛 → ∞. 

(iii) This follows immediately from the above part (ii). 

Corollary 3.6. Let 𝑋 be a Banach space over ℝ𝑁 , 𝑇 be a bounded linear operator with 

‖𝑇‖ >̇ 1̇ and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits of the sequence space 𝑋. Then for any 

initial point 𝑦 ∈ 𝑋, then the following statements are held: 

(i) The orbit is not Lyapunov stable at any point 𝑥, 

(ii) The orbit is not asymptotic stable at any point 𝑥, 

(iii) The orbit is not exponentially stable at any point 𝑥. 

Proof: (i) Let [𝑥] be an orbit. Then for each 𝜀 >̇ 0̇, there exists a 𝛿 >̇ 0̇ and an initial point y 

in X such that 

‖𝑥−̇𝑦‖𝑁,𝜃 <̇ 𝛿 ⟹ ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦)‖𝑁,𝜃  ≤̇
1

ℎ𝑟
∑  

𝑘∈𝐼𝑟

  |𝑇𝑛𝑥𝑘−̇𝑇
𝑛𝑦𝑘|𝑁 

                                                                 ≤̇ ‖𝑇𝑛‖𝑁 ×̇
1

ℎ𝑟
∑  𝑘∈𝐼𝑟   |𝑥𝑘−̇𝑦𝑘|𝑁 

                                                                 ≤̇  ‖𝑇‖𝑁
𝑛 ×̇ ‖𝑥−̇𝑦‖𝑁,𝜃. 

As ‖𝑇‖ >̇ 1̇, then ‖𝑇‖𝑁
𝑛 → ∞, as 𝑛 → ∞ 

 i.e., ‖𝑇𝑛(𝑥)−̇𝑇𝑛(𝑦𝑁)‖𝑁 → ∞, as 𝑛 → ∞ 

Therefore, [𝑥] is not Lyapunov-stable. Since [𝑥] is not lyapunov-stable, then it can't be 

asymptotic and exponential-stable. 

Theorem 3.7. Let 𝑋 be a Banach space over ℝ𝑁 and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits 

of the sequence space 𝑋. Then 

(i) There is a bijective linear function 𝐹: 𝑋 → 𝑉 i.e., there is a one-one correspondence from 

𝑋 to 𝑉, 

(ii) (𝑥𝑘) → 𝑥 ⟺ [𝑥𝑘] → [𝑥] 

(iii) (𝑥𝑘) is Cauchy sequence in 𝑋 ⟺ [𝑥𝑘] is Cauchy sequence in 𝑉. 
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Proof: (i) We define 𝐹: 𝑋 → 𝑉 by F(x) = [x]. 

Then it is cleared that F is bijective because for each 𝑥 ∈ 𝑋, there exists al unique orbit [x] in 

V. 

Now, let 𝑥, 𝑦 ∈ 𝑋 and 𝛼 ∈ ℝ𝑁. Then 

𝐹(𝛼𝑥 + 𝑦) = [𝛼𝑥 + 𝑦] = {𝛼𝑥 + 𝑦, 𝑇(𝛼𝑥 + 𝑦), 𝑇2(𝛼𝑥 + 𝑦),… } 

                                                            = 𝛼{𝑥, 𝑇𝑥, 𝑇2(𝑥), … } + {𝑦, 𝑇𝑦, 𝑇2(𝑦), … }    

                                                            = 𝛼[𝑥] + [𝑦] 

                                                            = 𝛼𝐹(𝑥) + 𝐹(𝑦) 

Therefore, F is linear bijective function. 

 

(ii) Let (𝑥𝑘) → 𝑥 in X. Then for each 𝜀 > 0̇, there exists a 𝑁 ∈ ℕ such that 

‖𝑥𝑛−̇𝑥‖ <
𝜖

‖𝑇‖𝑁
𝛽
, for all 𝑛 ≥ 𝑁 

where ‖𝑇‖𝑁
𝛽
≥ ‖𝑇‖𝑁

𝑘 , for all 𝑘 ≥ 0. 

We have, 

                     ‖[𝑥𝑛]−̇[𝑥]‖𝑁 = ‖(𝑥𝑛, 𝑇(𝑥𝑛), 𝑇
2(𝑥𝑛),… . . ) − (𝑥, 𝑇(𝑥), 𝑇

2(𝑥), … . . )‖𝑁 

                                           = ‖(𝑥𝑛−̇𝑥, 𝑇(𝑥𝑛)−̇𝑇(𝑥), 𝑇
2(𝑥𝑛)−̇𝑇

2(𝑥), … . . )‖𝑁                            

                                           = sup
𝑘≥0
 ‖𝑇𝑘(𝑥)−̇𝑇(𝑥)‖𝑁 
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Now,         

                             ‖𝑇𝑘(𝑥𝑘)−̇𝑇(𝑥)‖𝑁 ≤˙ ‖𝑇𝑘‖𝑁‖(𝑥𝑘−̇𝑥)‖𝑁 

                                                           ≤ ‖𝑇‖𝑁
𝑘 ‖(𝑥𝑘−̇𝑥)‖𝑁   

                                                           ≤
𝜀

‖𝑇‖𝑁
𝛽 ‖𝑇‖𝑁

𝑘  

                                                           ≤
𝜀

‖𝑇‖𝑁
𝛽 ‖𝑇‖𝑁

𝛽
= 𝜀 

i.e., sup𝑘≥0  ‖𝑇
𝑘(𝑥)−̇𝑇(𝑥)‖𝑁 <̇ 𝜀 implies ‖[𝑥𝑛]−̇[𝑥]‖𝑁 <̇ 𝜀, for all 𝑛 ≥ 𝑁. 

Conversely, we assume for each 𝜖 >̇ 0̇, there exists a 𝑁 ∈ ℕ such that 

‖[𝑥𝑛]−̇[𝑥]‖𝑁 <̇ 𝜀, for all 𝑛 ≥ 𝑁

⟹ sup
𝑘≥0
 ‖𝑇𝑘(𝑥𝑘−̇𝑥)‖𝑁 <̇ 𝜀

⟹ ‖𝑇𝑘(𝑥𝑘−̇𝑥)‖𝑁 <̇ 𝜀, for all 𝑘 ≥ 0

 

In particular k = 0, 𝑇0 = 𝐼, identity map, so we have 

⟹ ‖(𝑥𝑘−̇𝑥)‖𝑁 <̇ 𝜀 

Hence, (𝑥𝑘) → 𝑥 in X. 

(iii) This can be proved from the following proof of (i). 

Theorem 3.8. The orbit space 𝑉 is a Banach space with respect to the norm defined by 

𝐸𝑞(1). 
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Proof: Let [𝑥𝑛] is Cauchy sequence in V. Then, for each 𝜀 >̇ 0̇, there exists a natural number 

N such that 

‖[𝑥𝑛]−̇[𝑥𝑚]‖𝑁 <̇ 𝜀, for all 𝑛,𝑚 ≥ 𝑁.− − − − − −−− −(2) 

 

⟹ sup
𝑘≥0
 ‖𝑇𝑘(𝑥𝑛−̇𝑥𝑚)‖𝑁 <̇ 𝜀, for all 𝑛,𝑚 ≥ 𝑁 

                                   ⟹ ‖𝑇𝑘(𝑥𝑛−̇𝑥𝑚)‖𝑁 <̇ 𝜖, for all 𝑛,𝑚 ≥ 𝑁 and for all 𝑘 ≥ 0. 

In particular k = 0, 𝑇0 = 𝐼, Identity map, so we have 

⟹ ‖(𝑥𝑛−̇𝑥𝑚)‖𝑁 <̇ 𝜀, for all 𝑛,𝑚 ≥ 𝑁 

Since (𝑥𝑚) be a Cauchy sequence in X, so it is convergent to some element x in X.  

Then by Theorem 3.7. (ii), we have 

[𝑥𝑚] → [𝑥] 

Now, from Eq(2), we have 

‖[𝑥𝑛]−̇[𝑥]‖𝑁 <̇ 𝜀, for all 𝑛,𝑚 ≥ 𝑁 

Therefore, every Cauchy sequence [𝑥𝑛] converges in V. Consequently, V is a Banach space. 

Theorem 3.9. Let 𝑋 be a Banach space over ℝ𝑁 and 𝑉 = {[𝑥]: 𝑥 ∈ 𝑋} be the space of orbits of 

the sequence space 𝑋. Let 𝑌 be a subset of 𝑋 and 𝑊 be the corresponding subset of 𝑉. Then 

(i) If 𝑌 is a closed subspace of 𝑋, then 𝑊 is a closed subspace of 𝑉, 

(ii) If 𝑌 is a 𝑇-invariant subspace of 𝑋, then 𝑊 is a 𝑇-invariant subspace of 𝑉, 

(iii) If 𝑌1 ⊂ 𝑌2 ⊂ 𝑋, then the corresponding subspaces 𝑊1, and 𝑊2 such that 𝑊1 ⊂ 𝑊2 ⊂ 𝑉 

(iv) If 𝑌 is a dense subspace of the separable space 𝑋, then 𝑊 is a dense subspace of 𝑉, and 𝑉 

is also a separable space. 
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Proof: (i) Suppose 𝑌 is a closed subspace of 𝑋. First, show that 𝑊 is a subspace of 𝑉. For 

this, consider 𝑥, 𝑦 ∈ 𝑌 and 𝛼, 𝛽 in ℝ𝑁 such that 

𝛼𝑥 + 𝛽𝑦 ∈ 𝑌 ⟹ [𝛼𝑥 + 𝛽𝑦] ∈ 𝑊 

. Further, 𝑥, 𝑦 ∈ 𝑌, we have [𝑥], [𝑦] ∈ 𝑊. Now, 

𝛼[𝑥] + 𝛽[𝑦] = 𝛼{𝑥, 𝑇(𝑥), 𝑇2(𝑥), … } + 𝛽{𝑦, 𝑇(𝑦), 𝑇2(𝑦), … } 

                                            = {𝛼𝑥, 𝑇(𝛼𝑥), 𝑇2(𝛼𝑥), … . } + {𝛽𝑦, 𝑇(𝛽𝑦), 𝑇2(𝛽𝑦), … . } 

                                             = {𝛼𝑥 + 𝛽𝑦, 𝑇(𝛼𝑥 + 𝛽𝑦), 𝑇2(𝛼𝑥 + 𝛽𝑦),… } = [𝛼𝑥 + 𝛽𝑦] 

Therefore, [𝑥], [𝑦] ∈ 𝑊 implies 𝛼[𝑥] + 𝛽[𝑦] ∈ 𝑊. 

Now, for closedness, suppose [𝑧] ∈ 𝑊‾ , we show [𝑧] ∈ 𝑊. Since [𝑧] ∈ 𝑊‾ , then 𝑧 ∈ 𝑌‾ , by our 

assumption, 𝑌 = 𝑌‾  implies 𝑧 ∈ 𝑌, we have [𝑧] ∈ 𝑊. 

The proof of the statements (ii), (iii) and (iv) are easy. 
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Abstract: In this article, we study the properties of ideal convergence of a sequence of bi-

complex numbers. We shall discuss some of the basics of bi-complex numbers. We have 

introduced and explored the classes of sequences of 𝕀-convergent, 𝕀-null, 𝕀-Cauchy, 𝕀-bounded, 

𝕀𝑝-summable sequences of bi-complex numbers and studied their properties. Throughout the 

article, we use the notation ℂ2(or 𝔹ℂ) as the set of bi-complex numbers with respect to the 

imaginary units 𝑖1and 𝑖2 and 𝑤(𝔹ℂ)as the class of all sequences of bi-complex numbers. 

 

1 Introduction 

The notion of the usual convergence of real sequences was extended to statistical convergence 

by Fast [8] and Schoenberg [15] independently. Substantial advancements ensued after the 

pioneering work of Šalát [13], Šalát et al. [14], Tripathy and Hazarika [18], Bera and Tripathy 

([2], [3], [4]), and many others. In our study, certain classes of 𝕀-convergent sequences of bi-

complex numbers have been studied with a functional analytic viewpoint where some 

properties of ideal convergent sequence spaces of bi-complex numbers are analyzed.  

 

 

 

 

 

 

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

94 
 

Let 𝑋 be a non-empty set. A non-empty collection 𝕀 of subsets of 𝑋 is called an ideal, if it 

satisfies the hereditary Property: If 𝐴 ∈ 𝕀 and 𝐵 ⊆ 𝐴, then 𝐵 ∈ 𝕀, and the additive Property: If 

𝐴, 𝐵 ∈ 𝕀, then 𝐴 ∪ 𝐵 ∈ 𝕀. 

A non-trivial ideal 𝕀 in a set 𝑋 is an ideal that satisfies: 𝕀 ≠  2𝑋. A non-empty ideal 𝕀 on a set 

X is said to be admissible, if it contains every singleton subset of 𝑋. A non-empty collection 𝐹 

of subsets of 𝑋 is a filter, if it is closed under finite intersections and supersets, and does not 

include the empty set. For every ideal 𝕀, 𝔽(𝕀)  =  {𝐾 ⊆ ℕ ∶ ℕ \ 𝐾 ∈  𝕀} is the corresponding 

filter of 𝕀. 

Example 1.1. The following are some examples of ideals: 

1. The class 𝕀𝑓 of all finite subsets of 2ℕ is a non-trivial admissible ideal of ℕ. 

2. Let 𝕀𝛿  =  {𝐴 ∈  2
ℕ ∶  𝛿(𝐴)  =  0}. Then 𝕀𝛿  is a non-trivial admissible ideal of ℕ, where δ 

is the statistical density of sequences. 

3. Similarly, let 𝕀𝑑  =  {𝐴 ∈  2
ℕ ∶  𝑑(𝐴)  =  0}. Then 𝕀𝑑  is an ideal of ℕ, where 𝑑 is the 

logarithmic density of sequences. 

Ideals and filters are interconnected due to their complementary nature. Specifically, given a 

filter, an ideal can often be constructed, and vice versa. One may refer to [9] for the details on 

ideals. 

 

2 Definitions and preliminaries: 

Bi-complex numbers have been studied for quite a long time, and a lot of work has been done 

on them. The work probably began with the work of the Italian school of Segre [16], 

Spampinato [17], and dragoni [7]. Following this, Price [11], Alpay et al. [1], Değirmen and 

Sağır [6], Kumar and Tripathy [10], and many others contributed to the study of bi-complex 

numbers. 

Segre defined the bi-complex number 𝜉 in the following manner:  

                                                    ξ = 𝑧1 + 𝑖2𝑧2 

                                                      = (𝑥1 + 𝑖1𝑥2) + 𝑖2(𝑥3 + 𝑖1𝑥4) 

                                                      = 𝑥1 + 𝑖1𝑥2 + 𝑖2𝑥3 + 𝑖1𝑖2𝑥4 , 

where 𝑧1, 𝑧2 ∈ ℂ1  and the two imaginary units 𝑖1 and 𝑖2 are such that 𝑖1
2 = 𝑖2

2 = −1; 𝑖1𝑖2 =

𝑖2𝑖1.  
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The set of bi-complex numbers is denoted by ℂ2(or 𝔹ℂ)and defined as 

ℂ2   = {𝑧1 + 𝑖2𝑧2: 𝑧1, 𝑧2 ∈ ℂ1(𝑖1)},
 

where ℂ1(𝑖1) = {𝑥1 + 𝑖1𝑥2: 𝑥1, 𝑥2 ∈ ℂ0 }, ℂ0 is the set of real numbers. 

 

In 𝔹ℂ, they are 0, 1,
 1 +𝑖1𝑖2

2
  and 

1−𝑖1𝑖2

2
.  
 1 +𝑖1𝑖2

2
 , and 

 1−𝑖1𝑖2

2
 are denoted by 𝑒1 and 𝑒2  and they 

satisfy: 𝑒1   + 𝑒2= 1, 𝑒1𝑒2  =  0. Furthermore, every bi-complex number 𝜉 =  𝑧1 + 𝑖2𝑧2  ∈

 𝔹ℂ, can be expressed as 𝜉 =  𝜇1𝑒1  +  𝜇2𝑒2, 

where 𝜇1  =  𝑧1  −  𝑖1𝑧2 and 𝜇2  =  𝑧1  + 𝑖1𝑧2 and 𝔹ℂ can be represented as 

𝔹ℂ =  𝑋1𝑒1  +  𝑋2𝑒2, 

where 𝑋1  =  {𝑧1  −  𝑖1𝑧2 ∶  𝑧1, 𝑧2  ∈  ℂ1} and 𝑋2  =  {𝑧1  + 𝑖1𝑧2 ∶  𝑧1, 𝑧2  ∈  ℂ1}. 

The Euclidean norm ∥·∥ on ℂ2 is defined as 

∥ 𝜉 ∥ = √|𝑧1|2 + |𝑧2|2 = √𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2. 

Let 𝜉, 𝜂 ∈ 𝔹ℂ, then ∥ 𝜉 · 𝜂 ∥ ≤  √2 ∥ 𝜉 ∥ · ∥ 𝜂 ∥. 

One may refer to ([1], [11]) for the details on 𝔹ℂ. 

We denote the set of all sequences of bi-complex numbers as 𝑤(𝔹ℂ). The algebraic operations 

addition ⨁, scalar multiplication ⨀  and multiplication ⨂ defined on 𝑤(𝔹ℂ) as follows, 

respectively:  

 

⨁ ∶  𝑤(𝔹ℂ)  ×  𝑤(𝔹ℂ) →  𝑤(𝔹ℂ), (𝜉, 𝜂)  →  𝜉 ⨁ 𝜂 =  (𝜉𝑘  +  𝜂𝑘), 

⨀ ∶  ℂ0 ×  𝑤(𝔹ℂ)  →  𝑤(𝔹ℂ), (𝑎, 𝜉)  →  𝑎 ⨀ 𝜉 =  (𝑎𝜉𝑘), 

⨂ ∶  𝑤(𝔹ℂ)  ×  𝑤(𝔹ℂ)  →  𝑤(𝔹ℂ), (𝜉, 𝜂)  →  𝜉 ⊗ 𝜂 =  (𝜉𝑘𝜂𝑘),  

        where  𝜉 =  (𝜉𝑘), 𝜂 =  (𝜂𝑘)  ∈  𝑤(𝔹ℂ) and  𝑎 ∈  ℂ0. 

 

Definition 2.1. [5] A sequence (𝜉𝑘)  ∈  𝑤(𝔹ℂ)  is called 𝕀-convergent to 𝜁 ∈ 𝔹ℂ, if for every 

𝜀 >  0, such that 

{𝑘 ∈ ℕ ∶ ∥ 𝜉𝑘  −  𝜁 ∥ ≥  𝜀}  ∈  𝕀, 

and it is written as 𝕀 −  lim 𝜉𝑘  =  𝜁. 
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Definition 2.2. [5] A sequence (𝜉𝑘)  ∈  𝑤(𝔹ℂ) is called 𝕀-null, if 𝜁 =  0 and it is written as 

𝕀− lim 𝜉𝑘  =  0. 

Definition 2.3. [5] A sequence (𝜉𝑘)  ∈  𝑤(𝔹ℂ) is called 𝕀 -Cauchy, if for every 𝜀 >  0, there 

exists a number m (depending on 𝜀), such that 

{𝑘 ∈ ℕ ∶ ∥ 𝜉𝑘  −  𝜉𝑚 ∥ ≥  𝜀}  ∈ 𝕀, 

and written as 𝐼 −  lim 𝜉𝑘  =  𝜁. 

Definition 2.4. [5] A sequence (𝜉𝑘)  ∈  𝑤(𝔹ℂ) is called 𝕀-bounded if there exists 𝑀 >  0 such 

that 

{𝑘 ∈ ℕ ∶ ∥ 𝜉𝑘 ∥ >  𝑀 }  ∈  𝕀. 

Definition 2.5. [5] Let (𝜉𝑘), (𝜂𝑘)  ∈  𝑤(𝔹ℂ) be two sequences. We say that 𝜉𝑘 = 𝜂𝑘 , for 

almost all 𝑘 relative to 𝕀(𝑎. 𝑎. 𝑘. 𝑟. 𝕀), if 

{𝑘 ∈ ℕ ∶  𝜉𝑘 ≠ 𝜂𝑘}  ∈  𝕀. 

 

Here we define the sets 𝕀𝑐(𝔹ℂ), 𝕀𝜃(𝔹ℂ), 𝕀∞(𝔹ℂ) and 𝕀𝑝(𝔹ℂ) of 𝕀-convergent, 𝕀-null, 𝕀-

bounded, 𝕀𝑝-summable. 

 

𝕀𝑐(𝔹ℂ) ≔ {(𝜉𝑘) ∈ 𝑤(𝔹ℂ): {𝑘 ∈ ℕ: ‖𝜉𝑘 − 𝜁‖ ≥ 𝜀} ∈ 𝕀} 

𝕀𝜃(𝔹ℂ) ≔ {(𝜉𝑘) ∈ 𝑤(𝔹ℂ): {𝑘 ∈ ℕ: ‖𝜉𝑘‖ ≥ 𝜀} ∈ 𝕀} 

𝕀𝐶𝑎(𝔹ℂ) ≔ {(𝜉𝑘) ∈ 𝑤(𝔹ℂ): ∃𝑚 = 𝑚(𝜀) such that {𝑘 ∈ ℕ: ‖𝜉𝑘 − 𝜁‖ ≥ 𝜀}} 

𝕀 ∞(𝔹ℂ) ≔ {(𝜉𝑘) ∈ 𝑤(𝔹ℂ): ∃𝑀 > 0 such that {𝑘 ∈ ℕ: ‖𝜉𝑘‖ > 𝑀} ∈ 𝕀} 

𝕀𝑝(𝔹ℂ) ≔ {(𝜉𝑘) ∈ 𝑤(𝔹ℂ):∑‖𝜉𝑘𝑖‖
𝑝
< ∞

∞

𝑖=1

 for 0 < p < 1 &(∑‖𝜉𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

< ∞, for 1 ≤ p

< ∞ for some {𝑘1 < 𝑘2 < 𝑘2 < ⋯} ∈ 𝐹(𝕀)} 
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Lemma 2.1. [12] The algebraic operations addition ⨁, scalar multiplication ⨀ and 

multiplication ⨂ defined on 𝑤(𝔹ℂ) as follows, respectively:  

 

⨁ ∶  𝑤(𝔹ℂ)  ×  𝑤(𝔹ℂ) →  𝑤(𝔹ℂ), (𝜉, 𝜂)  →  𝜉 ⨁ 𝜂 =  (𝜉𝑘  +  𝜂𝑘), 

⨀ ∶  ℂ0 ×  𝑤(𝔹ℂ)  →  𝑤(𝔹ℂ), (𝑎, 𝜉)  →  𝑎 ⨀ 𝜉 =  (𝑎𝜉𝑘), 

⨂ ∶  𝑤(𝔹ℂ)  ×  𝑤(𝔹ℂ)  →  𝑤(𝔹ℂ), (𝜉, 𝜂)  →  𝜉 ⊗  =  (𝜉𝑘𝜂𝑘),  

        where  𝜉 =  (𝜉𝑘), 𝜂 =  (𝜂𝑘)  ∈  𝑤(𝔹ℂ) and  𝑎 ∈  ℂ0. 

 

Lemma 2.2. [12] The set of all sequences of bi-complex numbers 𝑤(𝔹ℂ) is a sequence space. 

Lemma 2.3. [12] Let 𝑝 and 𝑞 be real numbers with 1 < 𝑝 < ∞ such that 
1

𝑝
+
1

𝑞
= 1 and 𝜉𝑘, 𝜂𝑘 ∈

𝔹ℂ for 𝑘 ∈ ℕ, then 

 ∑‖𝜉𝑘 𝜂𝑘‖
𝑝 ≤ √2 (∑‖𝜉𝑘‖

𝑝

∞

𝑖=1

)

1
𝑝

(∑‖𝜂𝑘‖
𝑞

∞

𝑖=1

)

1
𝑞∞

𝑖=1

. 

 

Lemma 2.4. [12] (Bi-complex Minkowski’s Inequality) Let 𝑝 be real numbers with 1 < 𝑝 <
∞ and 𝜉𝑘, 𝜂𝑘 ∈ 𝔹ℂ for 𝑘 ∈ ℕ, then 

 (∑‖𝜉𝑘 + 𝜂𝑘‖
𝑝

𝑛

𝑘=1

)

1
𝑝

≤ [(∑‖𝜉𝑘‖
𝑝

𝑛

𝑘=1

)

1
𝑝

+ (∑‖𝜂𝑘‖
𝑝

𝑛

𝑘=1

)

1
𝑝

] 

 

3.1. Main Results: 

Theorem 3.1. The set 𝕀∞(𝔹ℂ) is a sequence space. 
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Proof: Let, 𝜉 = (𝜉𝑘), 𝜂 = (𝜂𝑘) ∈ 𝕀∞(𝔹ℂ) and 𝑎 ∈ ℂ0 then sup
𝑘𝑖
′
‖𝜉𝑘𝑖

′‖ < ∞, sup
𝑘𝑖
′
‖𝜂𝑘𝑖

′′‖ < ∞, 

for some  

𝐾1 = {𝑘1
′ < 𝑘2

′ < 𝑘3
′ < ⋯} ∈ 𝔽(𝕀) and 𝐾2 = {𝑘1

′′ < 𝑘2
′′ < 𝑘3

′′ < ⋯} ∈ 𝔽(𝕀).  

Let, 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝔽(𝕀).  

Now sup
𝑘𝑖∈𝐾

‖𝜉𝑘 + 𝑏𝜂𝑘‖ ≤  sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖‖ + sup
𝑘𝑖∈𝐾

‖𝜂𝑘𝑖‖  

                                       ≤ sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖‖ + sup
𝑘𝑖∈𝐾

‖𝜂𝑘𝑖‖ < ∞           

Therefore,  𝜉⨁𝜂 ∈ 𝕀∞(𝔹ℂ). 

For 𝑎 ∈ ℂ0, sup
𝑘𝑖∈𝐾

‖𝑎𝜉𝑘𝑖‖ ≤ |𝑎| sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖‖ < ∞. 

Therefore, a⨀𝜉 ∈ 𝕀∞(𝔹ℂ). 

And so 𝕀∞(𝔹ℂ) is a subspace of the space 𝑤(𝔹ℂ). 

Hence, the set 𝕀∞(𝔹ℂ)  is a sequence space. 

Theorem 3.2. The class of sequences ( 𝕀∞(𝔹ℂ), 𝑑 𝕀∞(𝔹ℂ)) is a complete metric space with the 

metric 𝑑 𝐼∞(𝔹ℂ) defined by 

    𝑑 𝐼∞(𝔹ℂ): 𝕀∞(𝔹ℂ)  ×  𝕀∞(𝔹ℂ) ⟶ [0,∞), (𝜉, 𝜂) ⟶ 𝑑𝐼∞(𝔹ℂ)(𝜉, 𝜂) = sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖  - - (1) 

for some  𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝐹(𝕀) where  𝜉 = (𝜉𝑘), 𝜂 = (𝜂𝑘) ∈
𝕀∞(𝔹ℂ).    

Proof: 1st we proof the metric axioms. 

i)                    𝑑𝐼∞(𝔹ℂ)(𝜉, 𝜂) = 0 

        ⟺ sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖ = 0 

                                                                  ⟺ 𝜉𝑘𝑖 = 𝜂𝑘𝑖  ∀𝑖 ∈ ℕ 

           ⟺ 𝜉𝑘 = 𝜂𝑘 for 𝑎. 𝑎. 𝑘. 𝑟. 𝕀. 
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ii) 𝑑𝕀∞(𝔹ℂ)(𝜉, 𝜂) = sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖ = sup
𝑘𝑖∈𝐾

‖𝜂𝑘𝑖 − 𝜉𝑘𝑖‖ = 𝑑𝕀∞(𝔹ℂ)(𝜂, 𝜉).    

iii) Let 𝜇 ∈ 𝕀∞(𝔹ℂ) and 𝐾 = 𝐾1 ∩ 𝐾2 ∩ 𝐾3 ∈ 𝔽(𝕀).    

 𝑑𝕀∞(𝔹ℂ)(𝜉, 𝜂) = sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖ ≤ sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜇𝑘𝑖 + 𝜇𝑘𝑖 − 𝜂𝑘𝑖‖   

≤ sup
𝑘𝑖∈𝐾

‖𝜉𝑘𝑖 − 𝜇𝑘𝑖‖ + sup
𝑘𝑖∈𝐾

‖𝜇𝑘𝑖 − 𝜂𝑘𝑖‖  =𝑑𝕀∞(𝔹ℂ)(𝜉, 𝜇) + 𝑑𝕀∞(𝔹ℂ)(𝜇, 𝜂). 

Therefore, 𝑑𝕀∞(𝔹ℂ) satisfies the metric axioms on the space 𝕀∞(𝔹ℂ). 

Next, we show that  𝕀∞(𝔹ℂ) is complete. 

Let (𝜉𝑚) be an arbitrary Cauchy Sequence in 𝕀∞(𝔹ℂ), where 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘. 

Then, ∃𝑛𝑜(𝜀) ∈ ℕ , such that 𝑑𝕀∞(𝔹ℂ)(𝜉𝑚, 𝜉𝑟) = sup
𝑖∈ℕ 
‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

𝑟 ‖ < 𝜀 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀). 

Then, for fixed 𝑖,  ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

𝑟 ‖ < 𝜀 ∀𝑚, 𝑟 ≥ 𝑛𝑜.                       - - - - - - - - - - - - - (2)  

In this case for any fixed 𝑖, (𝜉𝑘𝑖
1 , 𝜉𝑘𝑖

2 , 𝜉𝑘𝑖
3 , … , 𝜉𝑘𝑖

𝑚, … ) is a bi-complex Cauchy sequence. So it 

converges to a point say 𝜉𝑘
∗ ∈ 𝔹ℂ.  Define the sequence 𝜉∗ = (𝜉𝑘

∗) = (𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … ), with 

infinitely many limits 𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … and show 𝜉∗ ∈ 𝕀∞(𝔹ℂ) and  𝜉𝑚 ⟶ 𝜉∗ 𝑎𝑠 𝑚 ⟶ ∞. 

Indeed in (2), by letting r⟶∞ for any fixed 𝑘 and using the continuity of Euclidean norm 

function ‖⋅‖ ∀𝑚 > 𝑛𝑜(𝜀), we get  ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖ < 𝜀  

And so 𝑑𝕀∞(𝔹ℂ)(𝜉𝑚,  𝜉
∗) = sup

𝑖∈ℕ
‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖ < 𝜀. 

(𝜉𝑚) ⊂ 𝕀∞(𝔹ℂ) converges to 𝜉∗ = (𝜉𝑘
∗) ∈  𝑤(𝔹ℂ). 

On the other hand, as 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘 ∈ 𝕀∞(𝔹ℂ) for each 𝑚 ∈ ℕ, ∃𝑡𝑚 ∈ (0,∞) such that ‖𝜉𝑘𝑖

𝑚‖ <

𝑡𝑚, for all 𝑖 ∈ ℕ. 

  ‖𝜉𝑘𝑖
∗ ‖ ≤ ‖𝜉𝑘𝑖

∗ − 𝜉𝑘𝑖
𝑚‖ + ‖𝜉𝑘𝑖

𝑚‖ < 𝜀 + 𝑡𝑚 holds for 𝑘𝑖 ∈ 𝐾 ∈ 𝔽(𝕀) and 𝑚 ≥ 𝑛𝑜(𝜀), which is 

independent of k. Therefore 𝜉∗ = (𝜉𝑘
∗) ∈ 𝕀∞(𝔹ℂ). Hence, 𝕀∞(𝔹ℂ) is complete. 
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Corollary 3.1. The sequence space 𝕀∞(𝔹ℂ) is a Banach space with the norm  ‖⋅‖𝐼∞(𝔹ℂ) defined 

by  

‖𝜉‖𝕀∞(𝔹ℂ) = sup
𝑖∈ℕ
‖𝜉𝑘𝑖‖ , 𝜉 = (𝜉𝑘) ∈ 𝕀∞(𝔹ℂ). - - - - - - - - (3) 

Proof: Since Theorem 3.2. confirms that 𝕀∞(𝔹ℂ)is a complete metric space with the metric 

𝑑 𝕀∞(𝔹ℂ) induced by the norm ‖𝜉‖𝕀∞(𝔹ℂ) as defined by (3), the proof is evident. 

 

Theorem 3.3. The sets 𝕀𝑐(𝔹ℂ), 𝕀𝜃(𝔹ℂ) and 𝕀𝑝(𝔹ℂ) , for 0 < 𝑝 < ∞ are sequence spaces. 

Proof: (i) Let 𝜉 = (𝜉𝑘), 𝜂 = (𝜂𝑘) ∈ 𝕀𝑐(𝔹ℂ).  

Then there exists 𝜁1
∗, 𝜁2

∗ ∈ 𝔹ℂ such that 𝐼 − lim
𝑘→∞ 

𝜉𝑘 = 𝜁1
∗ and 𝕀 − lim

𝑘→∞ 
𝜂𝑘 = 𝜁2

∗ and so for every 

𝜀 > 0 ∃ 𝐾1, 𝐾2 ∈ 𝔽(𝕀) such that 𝐾1 = {𝑘1
′ < 𝑘2

′ < 𝑘3
′ < ⋯} = {𝑘𝑖

′  ∈ ℕ ∶ ∥ 𝜉𝑘𝑖
′  − 𝜁1

∗ ∥ <
𝜀

2
}  ∈

 𝔽(𝕀) and 𝐾2 = {𝑘1
′′ < 𝑘2

′′ < 𝑘3
′′ < ⋯} = {𝑘𝑖

′′  ∈ ℕ ∶ ∥ 𝜂𝑘𝑖
′′  − 𝜁2

∗ ∥ <
𝜀

2
}  ∈  𝔽(𝕀). 

Let 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝔽(𝕀).  

Then, ‖(𝜉𝑘𝑖 + 𝜂𝑘𝑖) − (𝜁1
∗ + 𝜁2

∗)‖ ≤ ‖(𝜉𝑘𝑖 − 𝜁𝑖
∗)‖ + ‖(𝜂𝑘𝑖 − 𝜁2

∗)‖ ≤
𝜀

2
+
𝜀

2
= 𝜀,   ∀𝑘𝑖 ∈ 𝐾.  

Which means  𝕀 − lim (
𝑘→∞

𝜉𝑘 − 𝜂𝑘) = 𝜁1
∗ + 𝜁2

∗ = 𝕀 − lim 
𝑘→∞

𝜉𝑘 + 𝕀 − lim 
𝑘→∞

𝜂𝑘. 

Therefore, 𝜉 ⨁ 𝜂 ∈ 𝕀𝑐(𝔹ℂ). 

(ii) Let 𝜉 = (𝜉𝑘) ∈ 𝐼𝑐(𝔹ℂ) and 𝑎 ∈ ℂ0 ∖ {0}. 

Then there exists 𝜁∗ ∈ 𝔹ℂ such that 𝕀 − lim
𝑘→∞ 

𝜉𝑘 = 𝜁
∗  and so for every 𝜀 > 0 ∃ 𝐾, ∈ 𝔽(𝕀) such 

that 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = {𝑘𝑖  ∈ ℕ ∶ ∥ 𝜉𝑘𝑖  − 𝜁
∗ ∥ <

𝜀

|𝑎|
} ∈  𝔽(𝕀). 

Then, ∥ 𝑎𝜉𝑘𝑖  − 𝑎𝜁
∗ ∥ = ∥ 𝑎(𝜉𝑘𝑖  − 𝜁

∗) ∥ = |𝑎| ∥ 𝜉𝑘𝑖  − 𝜁
∗ ∥ ≤ |𝑎|

𝜀

|𝑎|
= 𝜀, ∀𝑘𝑖 ∈ 𝐾. 

Which means, 𝕀 − lim
𝑘→∞ 

𝑎𝜉𝑘 = 𝑎𝜁
∗ = 𝑎 ( 𝕀 − lim

𝑘→∞ 
𝜉𝑘) , 

Therefore, 𝑎⨀𝜉 ∈ 𝕀𝑐(𝔹ℂ). 
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For 𝑎 = 0, the proof is obvious. 

Hence, 𝕀𝑐(𝔹ℂ) is the sequence space. 

         For 𝕀𝜃(𝔹ℂ), it is easy to prove that it is the sequence space by taking 𝜁1
∗ = 𝜁2

∗ = 𝜁∗ = 0 

in the above. 

         For 𝕀𝑝(𝔹ℂ), 0 < 𝑝 < ∞ , Let 𝜉 = (𝜉𝑘), 𝜂 = (𝜂𝑘) ∈ 𝕀𝑝(𝔹ℂ). Then there exists  𝐾1 =
{𝑘1
′ < 𝑘2

′ < 𝑘3
′ < ⋯} ∈ 𝔽(𝕀) and 𝐾2 = {𝑘1

′′ < 𝑘2
′′ < 𝑘3

′′ < ⋯} ∈ 𝔽(𝕀) such that 

∑ ‖𝜉𝑘𝑖
′‖ < ∞∞

𝑖=1  and ∑ ‖𝜉𝑘𝑖
"‖ < ∞∞

𝑖=1 , respectively. 

Let, 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝔽(𝕀). Then the above inequalities hold for all 

𝑘𝑖 ∈ 𝐾. 

(i) Now for 0 < 𝑝 ≤ 1  

∑‖𝜉𝑘𝑖 + 𝜂𝑘𝑖‖
𝑝
≤∑(‖𝜉𝑘𝑖‖

𝑝
+ ‖𝜂𝑘𝑖‖

𝑝
) =∑‖𝜉𝑘𝑖‖

𝑝
+∑‖𝜉𝑘𝑖‖

𝑝
∞

𝑖=1

∞

𝑖=1

< ∞

∞

𝑖=1

∞

𝑖=1

, ∀𝑘𝑖 ∈ 𝐾. 

 

  For 1 < 𝑝 < ∞ (by Lemma 2.4),  

∑‖𝜉𝑘𝑖 + 𝜂𝑘𝑖‖
𝑝
≤ [(∑‖𝜉𝑘𝑖‖

𝑝
∞

𝑖=1

)

1
𝑝

+ (∑‖𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

]

∞

𝑖=1

𝑝

< ∞ , ∀𝑘𝑖 ∈ 𝐾. 

Therefore, 𝜉 ⨁ 𝜂 ∈ 𝕀𝑝(𝔹ℂ). 

(ii)  Let 𝜉 = (𝜉𝑘) ∈ 𝕀𝑝(𝔹ℂ) and 𝑎 ∈ ℂ0 ∖ {0}. Then there exists 𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} 

such that ∑ ‖𝜉𝑘𝑖‖ < ∞
∞
𝑖=1  ∀𝑘𝑖 ∈ 𝐾 ∈ 𝔽(𝕀).  

Then, we have ∑ ‖𝑎𝜉𝑘𝑖‖
𝑝
= ∑ |𝑎|𝑝‖𝜉𝑘𝑖‖

𝑝
= |𝑎|𝑝 ∑ ‖𝜉𝑘𝑖‖

𝑝∞
𝑖=1 < ∞,∞

𝑖=1
∞
𝑖=1  ∀𝑘𝑖 ∈ 𝐾 ∈ 𝔽(𝕀). 

Therefore,  𝑎⨀𝜉 ∈ 𝕀𝑝(𝔹ℂ). For 𝑎 = 0, the proof is understood. 

Hence, the set 𝕀𝑝(𝔹ℂ) is a sequence space. 
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Theorem 3.4. The class of sequences (𝕀𝑐(𝔹ℂ), 𝑑𝕀∞(𝔹ℂ)) is a complete metric space with the 

metric 𝑑𝕀∞(𝔹ℂ) defined by (1). 

Proof: Let (𝜉𝑚) be an arbitrary Cauchy Sequence in 𝕀∞(𝔹ℂ), where 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘. 

Let (𝜉𝑚) be an arbitrary Cauchy Sequence in 𝕀∞(𝔹ℂ), where 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘. 

Then ∃𝑛𝑜(𝜀) ∈ ℕ , such that 𝑑𝐼∞(𝔹ℂ)(𝜉𝑚, 𝜉𝑟) = sup
𝑖∈ℕ 
‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

𝑟 ‖ <
𝜀

3
 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀). 

Then for fixed 𝑖,  ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

𝑟 ‖ <
𝜀

3
 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀)                     - - - - - - - - - - - - - - - - - (4) 

In this case, for any fixed 𝑖, (𝜉𝑘𝑖
1 , 𝜉𝑘𝑖

2 , 𝜉𝑘𝑖
3 , … , 𝜉𝑘𝑖

𝑚, … ) is a bi-complex Cauchy sequence. So it 

converges to a point say 𝜉𝑘
∗ ∈ 𝔹ℂ.  Define the sequence 𝜉∗ = (𝜉𝑘

∗) = (𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … ), with 

infinitely many limits 𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … and show 𝜉∗ ∈ 𝕀∞(𝔹ℂ) and  𝜉𝑚 ⟶ 𝜉∗ 𝑎𝑠 𝑚 ⟶ ∞. 

In (4), by letting 𝑟 ⟶ ∞, for any fixed 𝑘 and using the continuity of Euclidean norm function 

‖⋅‖ ∀𝑚 > 𝑛𝑜(𝜀), we get  ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖ < 
𝜀

3
 .   

And so 𝑑𝕀∞(𝔹ℂ)(𝜉𝑚,  𝜉
∗) = sup

𝑖∈ℕ
‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖ < 𝜀 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀). 

Therefore, the sequence  (𝜉𝑚) ⊂ 𝕀𝑐(𝔹ℂ) converges to 𝜉∗ = (𝜉𝑘
∗) ∈  𝑤(𝔹ℂ). 

On the other hand as (𝜉𝑘
𝑛0)

𝑘∈ℕ
∈ 𝕀𝑐(𝔹ℂ) is a bi-complex 𝕀-Cauchy sequence, for every 𝜀 >

0 ∃𝑙 and ‖𝜉𝑘𝑖
𝑛0 − 𝜉𝑙

𝑛0‖ <
𝜀

3
 ∀𝑘𝑖 ∈ 𝐾 ∈ 𝔽(𝕀).  

Therefore, for every 𝜀 > 0 , 

‖𝜉𝑘𝑖
∗ − 𝜉𝑙

∗‖ = ‖𝜉𝑘𝑖
∗ − 𝜉𝑘𝑖

𝑛0 + 𝜉𝑘𝑖
𝑛0 − 𝜉𝑙

𝑛0 + 𝜉𝑙
𝑛0 + 𝜉𝑙

∗‖

≤ ‖𝜉𝑘𝑖
∗ − 𝜉𝑘𝑖

𝑛0‖ + ‖𝜉𝑘𝑖
𝑛0 − 𝜉𝑙

𝑛0‖ + ‖𝜉𝑙
𝑛0 − 𝜉𝑙

∗‖ <
𝜀

3
+
𝜀

3
+
𝜀

3
= 𝜀, ∀𝑘𝑖 ∈ 𝐾

∈ 𝐹(𝕀).  

   Therefore, 𝜉∗ = (𝜉𝑘
∗) ∈ 𝕀𝑐(𝔹ℂ) and is a bi-complex 𝕀 -Cauchy sequence. Hence 𝕀𝑐(𝔹ℂ) is 

complete. 

 

We state the following Corollary without proof. 
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Corollary 3.2. The sequence space (𝕀𝜃(𝔹ℂ), 𝑑𝕀∞(𝔹ℂ)) is a complete metric space with the 

metric 𝑑𝕀∞(𝔹ℂ) defined by (1). 

Theorem 3.5. The sequence spaces 𝕀𝑐(𝔹ℂ) and 𝕀𝜃(𝔹ℂ) are Banach spaces with the norm 

‖⋅‖𝕀∞(𝔹ℂ) defined by (3).  

Proof: Since theorem 4 and Corollary 2 confirm that 𝕀𝑐(𝔹ℂ) and 𝕀𝜃(𝔹ℂ) are complete 

metric spaces with the metric 𝑑 𝕀∞(𝔹ℂ) induced by the norm ‖𝜉‖𝕀∞(𝔹ℂ) as defined by (2), the 

proof is evident. 

Theorem 3.6. The sequence spaces (𝕀𝑝(𝔹ℂ), 𝑑𝕀𝑝(𝔹ℂ)) are complete metric spaces for 0 < 𝑝 <

∞, where 𝑑𝕀𝑝(𝔹ℂ) is defined as follows:  

𝑑𝐼𝑝(𝔹ℂ)(𝜉, 𝜂): 𝕀𝑝(𝔹ℂ) × 𝕀𝑝(𝔹ℂ) → [0,∞), 

(𝜉, 𝜂) → 𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜂) =

{
 
 

 
 ∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖

𝑝
∞

𝑖=1

, 0 < 𝑝 ≤ 1 

(∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

, 1 < 𝑝 < ∞

  

 

for some  𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝔽(𝕀) where  𝜉 = (𝜉𝑘), 𝜂 = (𝜂𝑘) ∈
𝕀𝑝(𝔹ℂ).    

Proof: Let 1 < 𝑝 < ∞. 

Now 1st we proof the metric axioms.      

i) 𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜂) ≥ 0  as ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖ ≥ 0 ∀𝜉, 𝜂 ∈ 𝕀𝑝(𝔹ℂ). 

Now  𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜂) = 0 ⟺ (∑ ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝∞

𝑖=1 )
1

𝑝 = 0 

       ⟺ ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝
= 0, ∀𝑖 ∈ ℕ 

                                                           ⟺ ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖ = 0, ∀𝑖 ∈ ℕ             

 ⟺ 𝜉𝑘𝑖 = 𝜂𝑘𝑖, ∀𝑖 ∈ ℕ 

                     ⟺ (𝜉𝑘) = (𝜂𝑘) for 𝑎. 𝑎. 𝑘. 𝑟. 𝕀. 
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ii)  𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜂)  = (∑ ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝∞

𝑖=1 )
1

𝑝 = (∑ ‖𝜂𝑘𝑖 − 𝜉𝑘𝑖‖
𝑝∞

𝑖=1 )
1

𝑝 = 𝑑𝕀∞(𝔹ℂ)(𝜂, 𝜉).    

iii) Let 𝜇 = (𝜇𝑘) ∈ 𝕀𝑝(𝔹ℂ) and 𝐾 = 𝐾1 ∩ 𝐾2 ∩ 𝐾3 ∈ 𝔽(𝕀).    

𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜂) = (∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

 

           = (∑‖(𝜉𝑘𝑖 − 𝜇𝑘𝑖) + (𝜇𝑘𝑖 − 𝜂𝑘𝑖)‖
𝑝

∞

𝑖=1

)

1
𝑝

 

                  ≤ (∑‖𝜉𝑘𝑖 − 𝜇𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

+ (∑‖𝜇𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

 

                                                           = 𝑑𝕀𝑝(𝔹ℂ)(𝜉, 𝜇) + 𝑑𝕀𝑝(𝔹ℂ)(𝜇, 𝜂).  

Therefore, 𝑑𝕀𝑝(𝔹ℂ) satisfies the metric axioms on the space 𝕀𝑝(𝔹ℂ) for 0 < 𝑝 < ∞. 

Next, we show that  𝕀𝑝(𝔹ℂ) is complete. 

Let (𝜉𝑚) be an arbitrary Cauchy Sequence in 𝕀𝑝(𝔹ℂ), where 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘∈ℕ. 

Then for every 𝜀 > 0, ∃𝑛𝑜(𝜀) ∈ ℕ , such that  

𝑑𝕀∞(𝔹ℂ)(𝜉𝑚, 𝜉𝑟) = (∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

< 𝜀 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀). 

Then for fixed 𝑖,  ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

𝑟 ‖ < 𝜀 ∀𝑚, 𝑟 ≥ 𝑛𝑜(𝜀).       - - - - - - - - - - - - - - -  -(5) 

In this case for any fixed 𝑖, (𝜉𝑘𝑖
1 , 𝜉𝑘𝑖

2 , 𝜉𝑘𝑖
3 , … , 𝜉𝑘𝑖

𝑚, … ) is a bi-complex Cauchy sequence. So it 

converges to a point say 𝜉𝑘
∗ ∈ 𝔹ℂ.  Define the sequence 𝜉∗ = (𝜉𝑘

∗) = (𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … ), with 

infinitely many limits 𝜉1
∗, 𝜉2

∗, 𝜉3
∗, … and show 𝜉∗ ∈ 𝕀𝑝(𝔹ℂ) and  𝜉𝑚 ⟶ 𝜉∗ 𝑎𝑠 𝑚 ⟶ ∞. 
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And in (5), by letting 𝑟 ⟶ ∞ we have (∑ ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖
𝑝𝑛

𝑖=1 )
1

𝑝 < 𝜀 ∀𝑛 ∈ ℕ   

Now for 𝑛 tends to infinity, 𝑑𝐼𝑝(𝔹ℂ)(𝜉𝑚,  𝜉
∗) = (∑ ‖𝜉𝑘𝑖

𝑚 − 𝜉𝑘𝑖
∗ ‖

𝑝𝑛
𝑖=1 )

1

𝑝 ≤ 𝜀. 

(𝜉𝑚) ⊂ 𝕀𝑝(𝔹ℂ) converges to 𝜉∗ = (𝜉𝑘
∗) ∈  𝑤(𝔹ℂ). 

On the other hand, as 𝜉𝑚 = (𝜉𝑘
𝑚)𝑘 ∈ 𝕀𝑝(𝔹ℂ). By bi-complex Minkowski’s inequality and 

convergence of series ∑ ‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖
𝑝𝑛

𝑖=1 , 

(∑‖𝜉𝑘𝑖
∗ ‖

𝑝
𝑛

𝑖=1

)

1
𝑝

= (∑‖𝜉𝑘𝑖
𝑚 − 𝜉𝑘𝑖

∗ ‖
𝑝

𝑛

𝑖=1

)

1
𝑝

 

                                                                 ≤ (∑‖𝜉𝑘𝑖
𝑚‖

𝑝
𝑛

𝑖=1

)

1
𝑝

+ (∑‖𝜉𝑘𝑖
∗ − 𝜉𝑘𝑖

𝑚‖
𝑝

𝑛

𝑖=1

)

1
𝑝

< ∞ 

holds for 𝑘𝑖 ∈ 𝐾 ∈ 𝐹(𝕀), which is independent of 𝑘. Therefore 𝜉∗ = (𝜉𝑘
∗) ∈ 𝕀∞(𝔹ℂ). Hence, 

𝕀𝑝(𝔹ℂ) is complete for 1 < 𝑝 < ∞. 

Similarly, we can show that 𝑑𝕀𝑝(𝔹ℂ)(𝜉𝑚,  𝜉
∗) = ∑ ‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖

𝑝
,∞

𝑖=1  is a metric and 𝕀𝑝(𝔹ℂ) is 

complete for 1 < 𝑝 < ∞.  

Corollary 3.3. The sequence spaces  𝕀𝑝(𝔹ℂ) are Banach spaces with the norm  ‖⋅‖𝐼𝑝(𝔹ℂ) 

defined by  

‖𝜉‖𝕀𝑝(𝔹ℂ) =

{
 
 

 
 ∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖

𝑝
∞

𝑖=1

, 0 < 𝑝 ≤ 1 

(∑‖𝜉𝑘𝑖 − 𝜂𝑘𝑖‖
𝑝

∞

𝑖=1

)

1
𝑝

, 1 < 𝑝 < ∞

, 

for some  𝐾 = {𝑘1 < 𝑘2 < 𝑘3 < ⋯} = 𝐾1 ∩ 𝐾2 ∈ 𝔽(𝕀), where  𝜉 = (𝜉𝑘) ∈ 𝕀𝑝(𝔹ℂ). 
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Proof:  The proof is clear from the above theorem 6. 
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Abstract: In this article we are going to define a set theoretic approach which is the 

generalization of set theory, fuzzy set and multiset. We define some operation on the basis of 

the new generalization set, some application of this set with interesting examples. We 

investigate and established some valuable result on the set which shows this theoretic approach 

very much advanced then other sets. 

Keywords: New Generalization Set; N-G membership, Union, Intersection, symmetric 

difference. 
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1. Introduction: 

 In the classical set theory Cantor set has property that the appearance of elements in a set is 

assessed in binary terms according to a bivalent condition  an element either belongs or does 

not belong to the set which is a set of points lying on a single line segment that has a number 

of remarkable and deep properties. It was discovered in 1874 by Henry John Stephen Smith 

and introduced by German mathematician Cantor in 1883[2]. Later on fuzzy sets (aka uncertain 

sets) are somewhat like sets whose elements have degrees of membership. Fuzzy sets were 

introduced independently by Zadeh [7] in 1965 as an extension of the classical notion of set.  

At the same time, Salii (1965) defined a more general kind of structure called an L-relation, 

which he studied in an abstract algebraic context. Fuzzy relations, which are used now in 

different areas, such as linguistics, decision-making and clustering are special cases of L-

relations when L is the unit interval [0, 1].  
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We have Cantor set, fuzzy set but in some case they also fail to represent real objects for 

overcome such kind of problems Wayne Blizard [1] in 1970 established the multisets theory. 

Multiset or bag set is a modification of the concept of a set that, unlike a set, allows for multiple 

instances for each of its elements. The positive integer number of instances, given for each 

element is called the multiplicity of this element in the multiset. As a consequence, an infinite 

number of multisets exist, which contain only elements x and y, but vary by the multiplicity of 

their elements. Blizard traced multisets back to the very origin of numbers, arguing that “in 

ancient times, the number n was often represented by a collection of n strokes, tally marks, or 

units. These and similar collections of objects are multisets, because strokes, tally marks, or 

units are considered indistinguishable. This shows that people implicitly used multisets even 

before mathematics emerged. After discovering the Blizard’s multiset theory classical set 

theory has become a particular case of multiset theory. Many mathematicians had studied on 

this set. Now a day we have multiset and fuzzy sset for multiset we had defined count function 

and for other type of set which is not well define we have membership function but we can’t 

apply both the case at a times. But in real life we may have uncertinity and multiplicity. In this 

article we have solve this problems which is also may considerable for the generalization of 

multiset, fuzzy set and classical set theory. 

2. Preliminary 

In this section we will give some definition from previous research work for the establishment 

of this paper. 

Definition 2.1. A domain X, is defined as the set of elements from which msets are constructed. 

The mset space [X]w is the set of all msets whose elements are from X such that no element 

occurs more than w times. 

Throughout this paper, we denote a multiset drawn from the multiset space [X]w by M 

Definition 2.2. An mset M drawn from the set X is represented by a count function M or CM:X→ 

N, where N represents the set of nonnegative integers. 
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Here C(x) is the number of occurrences of the element x in the mset M drawn from the set X = 

{x1, x2, ......,xn} as M = {m1/x1, m2/x2, .......mn/xn} where mi is the number of occurrences of the 

element xi, i = 1, 2, ..... n in the mset M. The elements which are not included in the mset M 

have zero count. 

Remark 2.1. We introduce some new notions on multiset topological space on the basis of the 

count function. Whenever CM(x) = 1 for every x∈X multisets become structurally equivalent to 

the class of sets. So whatever results and definition we establish when restricted to this 

condition must be equivalent to some results in classical set theory. 

Consider two msets M and N drawn from a set X. The following are the operations defined on 

the msets will be used in this article 

For the details of multisets such as addition, union, intersection, subtraction, compliment, one 

may refer [4, 5] 

The following are basic operations under collection of msets. Let [X]w be an mset space with 

CZ(x) as the multiplicities of xϵX and {M1, M2, .....}be a collection of msets drawn from [X]w. 

Then the following operations are possible under arbitrary collections of msets. 

1. The Union is defined by 

∪i∈IMi = {CM(x)/x : CM(x) = max{CMi(x) : i∈ I},for all x∈X}. 

2.  The intersection is defined by 

∩i∈IMi = {CM(x)/x : CM(x) = min{CMi(x) : i∈ I},for all x∈X}. 

3.  The mset complement is defined by 

Mc = Z Ɵ M = {CM
c(x)/x :CM

c(x) = CZ(x)-CM(x), for all x∈X}. 

Definition 2.3. Let M be an mset drawn from a set X. The support set of M denoted by M∗ is a 

subset of X and M∗ = {x∈X : CM(x) > 0}. 

Definition 2.4. An mset M is said to be an empty set if for all x∈X, CM(x) = 0. 

Definition 2.5. Let X be a support set and [X]wbe the mset space defined over X. Then for any 

mset M∈ [X]w, the complement Mc of M in [X]w is an element of [X]w such that CMc = w - CM(x) 

for all x∈X . 

 

 

 

 

 

 

 

 

 



Journal Tri. Math. Soc. V25, December (2023)  
 

111 
 

The following types of submsets of M can be defined from the mset space [X]w on the basis of 

multiplicity of elements. 

Definition 2.6. A submset N of M is a whole submset of M with each element in N having full 

multiplicity as in M i.e., CN(x) = CM(x) for every x∈N. 

Definition 2.7. A submset N of M is a partial whole submset of M is a partial whole submset 

of M with at least one element in N having full multiplicity as in M i.e. CN(x)=CN(x) for some 

x in N. 

Definition 2.8. A submset N of M is a full submset of M if each element in M is an element in 

N with the same or lesser multiplicity as in M 

i.e.CN(x) ≤ CM(x) for every xN. 

Some basic information about fuzzy set. 

Definition 2.9 A fuzzy set is a pair (X, m) where X is a set and m: X→[0, 1]  a membership 

function. The reference set X is called universe of discourse, and for each xX the value m(x) 

is called the grade of membership of x in (X, m). The function 𝑚 = 𝜇𝐴 is called the membership 

function of the fuzzy set A = (X, m). 

For a finite set X = {𝑥1, 𝑥2, 𝑥3,   , 𝑥𝑛} the fuzzy set (X, m) is often denoted by 

  {𝑚(𝑥1)/𝑥1,𝑚(𝑥2)/𝑥2, 𝑚(𝑥3)/𝑥3, ….  , 𝑚(𝑥𝑛)/𝑥𝑛}  

Let xX Then x is called 

• not included in the fuzzy set (X, m) if  𝑚(𝑥) = 0 (no member), 

• fully included if 𝑚(𝑥) = 1  (full member), 

• partially included if 0≤ 𝑚(𝑥)≤1  (fuzzy member). 
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Definition 2.10 A fuzzy set A = (X, m) is empty (A = ∅) iff (if and only if) 

for each xX  such that 𝜇𝐴(𝑥) = 𝑚(𝑥) = 0 

Definition 2.11 Two fuzzy sets A and B are equal (A = B) iff 

for each xX  such that 𝜇𝐴(𝑥) = 𝜇𝐵(𝑥) 

Definition 2.12 A fuzzy set A is included in a fuzzy set B (A⊆B ) iff 

for each xX  such that 𝜇𝐴(𝑥) ≤ 𝜇𝐵(𝑥). 

Definition 2.13 The complement of a  fuzzy set A is denoted by ¬A (sometimes denoted as Ac 

) is defined by the following membership function: 

for each xX  such that 𝜇𝐴𝑐(𝑥) = 1 − 𝜇𝐴(𝑥). 

Cardinality of fuzzy set:  

For a fuzzy set A with finite supp(A) (i.e. a 'finite fuzzy set'), its cardinality or scalar cardinality 

or sigma-count is given by 

 Card(A) = sc(A) = |A| = ∑ 𝜇𝐴(𝑥)𝑥∈𝑋 . 

In case that X itself a finite set, the relative cardinality is given by  

RealCard(A) =||A|| = sc(A)/|X| = |A|/|X| 

Disjoint fuzzy sets:  

Two fuzzy set A and B is said to be disjoint fuzzy sets iff the following mathematical 

condition holds  

∀𝑥 ∈ 𝑋: 𝜇𝐴(𝑥) = 0 ⋁ 𝜇𝐵(𝑥) = 0 . 
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Which is equivalent to                                                                                                                  

∄𝑥 ∈ 𝑋: 𝜇𝐴(𝑥) > 0⋀𝜇𝐵(𝑥) > 0  

and also equivalent to 

∀𝑥 ∈ 𝑋: min {𝜇𝐴(𝑥),  𝜇𝐵(𝑥)} = 0 

For disjoint fuzzy sets A, B any intersection will give ∅, and any union will give the same result. 

For more about fuzzy set theory we may refer to [7,8, 9]. 

3. Main result 

In this section we define some new definition and established some results on New GS set 

The New Generalization set in shortly denoted by New-GS set. 

Define The New Membership function Γ: X→ 𝑄+⋃{0} 

Definition 3.1. A domain X is defined as the set of elements from which New Generalization 

set is constructed. The New Generalization set [X]w is the set of all New Generalization set 

whose elements are from X such that no element occurs more than w times. 

Definition 3.2. A New Generalization set N drawn from the set X is represented by a New 

Membership function Γ: X→ 𝑄+⋃{0}, where 𝑄+ represents the set of nonnegative rational. 

Here Γ(x) is the number of occurrences of the element x in the New Generalization set N drawn 

from the set X = {x1, x2, ......,xn} as N = { 
Γ1

x1
, 
Γ2

x2
, ....... 

Γ𝑛

x𝑛
} where Γ𝑖  is the number of occurrences 

of the element xi, i = 1, 2, .....n in the New Generalization set N. The elements which are not 

included in the New Generalization set N have zero count. 
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Example 3.1 Let [X]10 ={x, y, z, t} are the elements the New-GS set is 𝑁= {
35
2

𝑥
, 
47
2

𝑦
, 
45
1

𝑧
, 
89
2

𝑡
}, where 

the New Membership of the element x is 35
2 means the appearance 3 times and 

2

5
 part of another 

one element which is fuzziness of the element. 

The following types of sub New Generalization sets of N can be defined from the domain of 

New Generalization set [X]w on the basis of New Membership of elements. 

Definition 3.3. A sub New-GS set M of N is a whole sub New-GS of N with each element in 

M having full mew membership as in N i.e., ΓN(x) = ΓM(x) for every x∈N. 

Definition 3.4. A sub New-GS set N of M is said to be empty New-GS set if the New 

Membership function is zero for all x in N. 

The empty New-GS set is denoted by 𝑁𝑒∅ where 𝑁𝑒∅ = {  } and  Γ𝑁𝑒∅= 0, ∀𝑥 ∈ 𝑋. 

Definition 3.5. A sub New-GS set N1 of N is a full sub New-GS set of N if each element in N1 

is an element in N with the same or lesser New memberhip as in N 

i.e, Γ𝑁1(x) ≤ ΓN(x). 

 Definition 3.6 Let 𝑁1and 𝑁2 be two New-GS set the union of two New-GS set is defined by 

𝑁 = 𝑁1 ∪ 𝑁2 and  𝛤𝑁= 𝛤𝑁1∪𝑁2=max{𝛤𝑁1 , 𝛤𝑁2}.  

Definition 3.7 Let 𝑁1and 𝑁2 be two New-GS set the intersection of two New-GS set is defined 

by 𝑁 = 𝑁1 ∩ 𝑁2 and  𝛤𝑁= 𝛤𝑁1∩𝑁2=min{𝛤𝑁1 , 𝛤𝑁2}. 

Definition 3.8 The complement of a New GS set A is denoted by ¬A (sometimes denoted as Ac 

) is defined by the following New GS membership function: 

for each xX  such that 𝛤𝐴𝑐(𝑥) = 𝑤 − 𝛤𝐴(𝑥). 
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Cardinality of New Generalization set:  

For a New GS set A the cardinality of A is the total number of element in A in case of finite 

set the cardinality will be finite in case of infinite set the cardinality will have different notion 

for countable infinite and uncountable New GS set. 

In case of finite set with weight w (maximum occurrence of any element not more than w) the  

cardinality of A is given by 

 Card(A) = |A| = ∑ 𝛤𝐴(𝑥)𝑥∈𝑋 . 

In case of A countable infinite New Generalization set the cardinality of A is define by Card(A) 

= |A| = ∑ 𝛤𝐴(𝑥)𝑥∈𝑋 = 𝑁𝐺𝓃0. 

In case of A uncountable New Generalization set the cardinality of A is define by Card(A) = 

|A| = ∑ 𝛤𝐴(𝑥)𝑥∈𝑋 = 𝑁𝐺𝒞0. 

Disjoint of New Generalization set: 

Two New GS set A and B is said to be disjoint New GS sets iff the following mathematical 

condition holds  

∀𝑥 ∈ 𝑋: min {𝛤𝐴(𝑥),  𝛤𝐵(𝑥)} = 0 

Which is equivalent to                                                                                                                   

∀𝑥 ∈ 𝑋: 𝛤𝐴(𝑥) = 0 ⋁ 𝛤𝐵(𝑥) = 0 .or  

∄𝑥 ∈ 𝑋: 𝛤𝐴(𝑥) > 0⋀𝛤𝐵(𝑥) > 0  

For disjoint New GS sets A, B any intersection will give Γ𝑁𝑒∅. 
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We have established some result and supportable example 

Theorem 3.1 Every multiset is a New-GS set but not necessarily conversely.  

Proof: from the definition of multiset let M = {
𝑚1

𝑥1
, 
𝑚2

𝑥2
, , … , 

𝑚𝑛

𝑥𝑛
} be a multiset where 𝑚𝑖 be the 

multiplicity of each 𝑥𝑖 and each 𝑚𝑖 is a positive integer now this set can also be a New-GS set 

where the 𝑚𝑖 be the New membership treat as Γ𝑖 of each 𝑥𝑖 , where the fractional part of the 

new membership is zero. 

In case of multiset every fractional part of new membership always zero. 

Hence every multiset is a New-GS set. 

For converse part we need an example 2.1 

Where example 2.1 is a New-GS set but not a multiset. 

Hence prove the theorem. 

Theorem 3.2 Every Scrip set is a New-GS set but not necessarily conversely. 

Proof: Since every scrip set is a multiset and every multiset is a New-GS set. 

So every Scrip set is a New-GS set. 

Using above theorem we can say that the converse is not true. 
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Theorem 3.3 Every fuzzy set is a New-GS set but not necessarily conversely. 

Proof: Let X = {𝑥1, 𝑥2, 𝑥3, ……, 𝑥𝑛} be a domain set  

Then A = {(𝑥1, 𝜇1), (𝑥2, 𝜇2), (𝑥3, 𝜇3),……, (𝑥𝑛, 𝜇𝑛)} is a fuzzy set where each  𝜇𝑖 is the 

membership value of 𝑥𝑖. 

To prove A is also a New-GS set  

Here 𝜇𝑖 can be consider as a New membership function where each integer part of the New 

membership function is zero. 

Hence prove the Necessary part of the theorem. 

 For converse part use example 2.1 this shows that the converse of the theorem is not true. 

Lemma: 3.1 For the set theory the following diagram is true. 
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