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Prof. Zdzislaw Pawlak And Rough Sets in Tripura, India 

 

Rabi Nanda Bhaumik 

President, Fuzzy & Rough Sets Association 

Retired Professor, Tripura University, Emeritus Fellow (UGC) 

rabi.nanda.bhaumik@gmail.com  

 
Abstract. 

 

 It is an honour to contribute my short article to this special commemorating the life and work of 

Professor Zdzislaw Pawlak. In this article, I would like to discuss our encounters with the field 

of Rough Set Theory and the memory of Prof. Z. Pawlak in Tripura, a small state in the eastern 

part of India. 
 

1. Introduction 
 It is my great proud that I was associated with the “ROUGH SET YEAR IN INDIA 2009” [3], 

where it was included International Conference on Rough Sets, Fuzzy Sets and Soft Computing, 

November 5-7, 2009, organized at Tripura University, Tripura, India in collaboration with IRSS 

& ISFUMIP.  

A number of conferences (International and National) on the Rough Sets and its associate 

concepts and several ceremonies on the memory of Prof. Z. Pawlak were organized by Fuzzy & 

Rough Sets Association and the Department of Mathematics, Tripura University, Tripura, India 

jointly.  
 

2. The International Conference on Rough Sets, Fuzzy Sets and Soft Computing: 
 

The International Conference on Rough Sets, Fuzzy Sets and Soft Computing, organized at 

Tripura University, November 5-7, 2009 in collaboration with IRSS & ISFUMIP [1]. The main 

aim of the conference was particularly to expose young researchers to the latest trends in fuzzy 

and rough systems through deliberations by well-known scientists. The committee has chosen 

over 49 papers to be included into the conference materials published by Serial Publications, 

New Delhi. It is also important to acknowledge that there were 141 participants from both India 

and abroad. 
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3.   Fuzzy & Rough Sets Association (FRSA), Tripura , India 

              

 

 

      

Inaugural Address by the Hon’ble Vice – Chancellor        Logo of FRSA 

The following Advisory Board and First Executive Committee of FRSA was formed: 

a) An Advisory Board (11 members) from different countries   

Honorar Co-Chairs -    Prof. J. Peters, Canada, Prof. S.K. Pal, India 

 

It is our Pleasure to inform 

you that the inauguration 

ceremony of ‘Fuzzy & 

Rough Sets Association 

(FRSA) was held on 21st 

January, 2009 at the Dept of 

Mathematics, Tripura Univer- 

sity at 2.30 PM. Prof A. Saha, 

Hon’ble Vice Chancellor, 

Tripura Univ. inaugurated the 

Fuzzy & Rough Set 

Association.  
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 Other members 

i)  Prof. S. Dominik, Poland 

ii) Prof. S. Ramanna, Canada 

iii) Prof. M. K. Chakraborty, CU, India 

iv) Prof. S. Ramanna, Canada 

v) Prof. S. Dominik, Poland 

vi) Prof. E. Turunen, Italy 

vii) Prof. E. E. Kerre, Belgium 

viii) Prof. S. Jafari, Denmark 

ix)  Prof. A. K. Srivastava, BHU, India 

b) First Executive Committee (7 members) 

i. President                 :    Prof. R. N. Bhaumik 

ii. Secretary                 :    Prof. Anjan Mukherjee 

iii. Treasurer                 :    Dr. S. Bhattacharya (Halder) 

iv. Editor                      :    Dr. Subrata Bhowmik 

v. Library-in-charge    :    Dr. Mrinal Kanti Bhowmik 

vi. Members                 :1. Dr. Debasish Bhattacharya 

Members                       :2. Dr. Dulal Dey      

 

4.   4th Death Anniversary of Prof. Z. Pawlak (April 7, 2010) 

In the Inaugural session of the Fourth Death Anniversary of Prof. Z. Pawlak held at the court 

Hall, Tripura University, Prof. A. Mukherjee, Head, Dept. of Mathematics and Secretary. FRSA, 

gave welcome address, Hon’ble Vice Chancellor Prof, A. Saha, presided over the Inaugural 

session, Prof. R.N. Bhaumik, President, FRSA gave the Keynote address, The Dean, Faculty of 

Science was Guest of Honour. In the Technical session 8 papers were presented by the   teachers 

and research scholars. 
 

5.  5th Death Anniversary of Prof. Z. Pawlak (April 7, 2011) 

      FRSA organized the 5th Death Anniversary of Prof. Z. Pawlak on 7th November, 2011.  

 

6. National Seminar on Rough set, Fuzzy set and Soft   Computing, November 11- 12, 2011 

 The seminar was organized by the Dept. of Mathematics, Tripura University in collaboration 

with Fuzzy and Rough Sets Association. 50 participants were present. 
 

7. 85th Birth Anniversary of Prof. Z. Pawlak (Nov 11, 2011) 
 

On November 11, 2011, FRSA paid homage to Prof. Z. Palak on   his 85th Birth Anniversary.  
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8. Workshop on Rough set & its Applications, Nov.16-17, 2012 
 

This Workshop, held at the Dept. of Mathematics, Tripura University, was organized by FRSA 

to observe the Rough Set Day and to pay  tribute to Prof. Z. Pawlak in presence of Prof. Dominik 

Slezak. 

In the Inaugural session of the workshop, we observed the Rough Set Day and paid tribute 

to Prof. Z. Pawlak. Prof. Dominik delivered the Keynote address of the said workshop. 60 

participants from different institutes took part in the workshop. Some pictures of the Workshop 

with Prof. D. Slezak. 
 

   
                                                   (1)                                              (2) 

                                     

                                                    (3)                                              (4) 

 

9. The first News Bulletin of FRSA 

In this occasion, the first News Bulletin of Fuzzy & Rough Sets Association was released by 

Prof. D. Slezak. In the 4th picture above, Dr. D. Slezak is releasing the News Bulletin -1. 
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10. 2nd Int. conf. on Rough Sets, Fuzzy Sets and Soft Computing, January. 17-19, 2013 

       2nd Int. conf. on Rough Sets, Fuzzy Sets and Soft Computing, January17-19 ,2013, in 

collaboration with FRSA. 90 participants were present and 26 papers were published by Narosa 

Publishing House, New Delhi [2]. 
 

 

11. 7th Death Anniversary of Prof. Z. Pawlak (April 10,2013) 
 

        FRSA organized the 7th Death Anniversary of Prof. Z. Pawlak on 10.04.2013 at the Dept. of 

Mathematics, Tripura University. In the Inaugural session, Prof. A Mukherjee, Head, Dept. of 

Mathematics &  

                         
 

 

 

 

12. News Bulletin of FRSA, Volume- II 

 

In this volume, 21 abstracts of published papers on Fuzzy Sets and Rough Sets were included 

and the following are cited. 
 

a)  One photograph (shown in next page) of Prof. Z. Pawlak with Prof. R. N. Bhaumik, Prof. 

M.K. Chakraborty with others, during 2002 AFSS, Int. Conf. on Fuzzy Systems, held on    Feb. 

3-6,2002 at Calcutta. 

 

 

Secretary, FRSA, gave welcome 

address. Honourble Prof. Anjan 

Ghosh, VC, Tripura University 

was Chief Guest. Prof. S. Sinha, 

Dean of Science was special 

Guest. Prof. R. N. Bhaumik, 

President, FRSA, discussed on 

Life & work of Prof. Z. Pawlak. 

5 papers were presented by the 

research Scholars. 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

6 
 

           
 
 

   (b)  One letter of Prof. Z. Pawlak, written to Prof. R. N. Bhaumik in 1991 is attached in next page. 
 
 

13. National Seminar on Rough Sets, Fuzzy Sets and their Applications, May 06, 2016  

The National Seminar was organized by the Dept. of Mathematics, Tripura University in 

collaboration with FRSA on the 10th Death anniversary of Prof. Z. Pawlak. In the Inaugural 

session, Dr. S. Bhattacharya (Halder), Head, Dept. of Mathematics and Treasurer, FRSA, gave 

the welcome address, Hon’ble Vice Chancellor, Tripura University, delivered talk on the topic. 

Prof. R.N. Bhaumik, President, FRSA and Prof. A. Mukherjee and Secretary, FRSA discussed 

how Fuzzy Sets and Rough Sets play an important role. After tea break 19 papers were presented 

by the Teachers and scholars of different institutes of India. The proceeding of seminar will be 

published as a book edited by Prof. B. C. Tripathy. Prof. R. N. Bhaumik and Prof. Anjan 

Mukherjee.  
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14. Rough Set Day will be observed on 13th Nov., 2016 by FRSA. 
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Pythagorean Neutrosophic Vague Soft Sets and Its Application on Decision 

Making Problem 

Anjan Mukherjee 

Department of Mathematics, Tripura University Agartala -799022; Tripura, INDIA; E-

mail: mukherjee123anjan@gmail.com  

*Correspondence: Anjan Mukherjee, mukherjee123anjan@gmail.com 

Abstract: 

 

In this paper we study the concept of pythagorean neutrosophic vague soft sets 

(PNVSsets). Some definitions and operations have been proposed. It is a combination of 

soft set and pythagorean neutrosophic vague set. Lastly an application has been shown 

with the above concepts in decision making problem. For further study, it may be applied 

to real world problems with realistic data and extend proposed algorithm to other decision 

making problem with vagueness and uncertainty. Here we need less calculation and few 

steps to get our result 
 

Keywords: Neutrosophic Set, PythagoreanNeutrosophic Set, Pythagorean Neutrosophic 

Soft Set, Vague set, Pythagorean Neutrosophic Vague Soft Set, Decision Making 

Problem. 

 

1.Introduction: Yager [16] introduced the new concept known as Pythagorean 

fuzzy sets. Pythagorean fuzzy sets has limitation that their square sum is less 

than or equal to Smarandache proposed neutrosophic logic and neutrosophic sets (NSs) 

in 1999 [11 ]. A NS is a set in which elements of the universe has respective degrees of 

truth, indeterminacy and falsity. They lie in the nonstandard unit interval of ]0-, 1+[. The 

uncertainty presented here (i.e, indeterminacy factor) is independent of the truth and 

falsity values. In 2019 Jansi at.el.[3] studied the concept of Pythagorean 

neutrosophic set with T and F are neutrosophic components and also define the 

correlation measure of Pythagorean neutrosophic set withT and F are  
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dependent neutrosophic components [PNS] and prove some of its properties. 

In 1999 Molodtsov  [8] introduce the concept soft set which was completely a new 

approach for deal with vagueness and uncertainties. Maji [7] introduced neutrosophic 

soft set by the concept of neutrosophic set and soft set. This paper is an attempt to 

introduce the concept of pythagoreanneutrosophic vague soft  sets (PNVSsets). Some 

definitions and operations have been proposed. It is a combination of soft set and 

pythagorean neutrosophic vague set. Lastly an application has been shown with the above 

concepts in decision making problem.In PNS sets, membership, non-membership and 

indeterminacy degrees are gratifying the condition 0 ≤ (μ𝐴(𝑥))2 + (𝑣𝐴(𝑥))2 +( 𝐴(𝑥))2≤ 2 

instead of μ𝐴(𝑥) +  𝑣𝐴(𝑥)+ ( )A x > 2 as in neutrosophic sets. The theory of vague set was 

first proposed by Gau and Buehrer [2] as an extension of fuzzy set theory and vague sets 

are regarded as a special case of content-dependent fuzzy sets. Neutrosophic vague set 

was defined by S. Allehezaleh [1] in 2015. We further study [10,12,15,17]. 

 
The organization of this paper is as follows: in section 2 we briefly present some basic 

definitions and resultsIn section 3, we introduce the concept of pythagorean neutrosophic 

vague soft sets (PNVSsets). Some definitions and results are established. In section 4, an 

application has been shown in decision making problem. 

 

2, Preliminaries 

In this section, we recall some basic notions for future work. 

 

Definition2.1:[2] A vague set A in the universe of discourse U is a pair(tA, fA) where tA, 

fA:U→ [0, 1] such that tA + fA≤ 1 for all 𝑢 ∈ 𝑈. The function 𝑡𝐴 and 𝑓𝐴 are called the true 

membership function and the false membership function respectively. The interval 

[𝑡𝐴, 1 − 𝑓𝐴] is called the value of u in A and is denoted by𝑉𝐴 = [𝑡𝐴, 1 − 𝑓𝐴] . 
 

Definition2.2: [2 ] Let X be a non-empty set. Let A and B be two vague sets in the 

form𝐴 = {< 𝑥, 𝑡𝐴, 1 − 𝑓𝐴 >: 𝑥 ∈ 𝑋},  𝐵 = {< 𝑥, 𝑡𝐵 , 1 − 𝑓𝐵 >: 𝑥 ∈ 𝑋}. Then  

(i) 𝐴 ⊆ 𝐵 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑡𝐴 ≤ 𝑡𝐵and 1 − 𝑓𝐴 ≤ 1 − 𝑓𝐵. 

(ii) 𝐴 ∪ 𝐵 = {< 𝑥,max(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)) ,max(1 − 𝑓𝐴(𝑥), 1 − 𝑓𝐵(𝑥)) >: 𝑥 ∈ 𝑋}  

(iii) 𝐴 ∩ 𝐵 = {< 𝑥,min(𝑡𝐴(𝑥), 𝑡𝐵(𝑥)) , min(1 − 𝑓𝐴(𝑥), 1 − 𝑓𝐵(𝑥)) >: 𝑥 ∈ 𝑋}  

(iv) 𝐴𝑐 = {< 𝑥, 𝑓𝐴, 1 − 𝑡𝐴 >: 𝑥 ∈ 𝑋}.  
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Definition2.3:[10,11] A neutrosophic set A on the universe of discourse U is defined as 

( ) ( ) ( ) , , ,A A AA x x x x x U  =   , where , , 0,1A A A U   − + →   are functions such that 

the condition: ( ) ( ) ( ), 0 3A A Ax U x x x  − +   + +   is satisfied. 

Here ( ) ( ) ( ), ,A A Ax x x   represent the truth-membership, indeterminacy-membership 

and falsity-membership respectively of the element x U . From philosophical point of 

view, the neutrosophic set takes the value from real standard or non-standard subsets of

0,1− +  . But in real life applications in scientific and engineering problems it is difficult 

to use neutrosophic set with value from real standard or non-standard subset of 0,1− +  . 

Hence, we consider the neutrosophic set which takes the value from the subset of 0,1 . 

Definition2.4: [ 1] A neutrosophic vague set ANV on the universe of discourse U written 

as ANV = {<x; 𝑇̂𝐴𝑁𝑉(x); 𝐼𝐴𝑁𝑉(x); 𝐹̂𝐴𝑁𝑉(x)>; xU} whose truth-membership, 

indeterminacy-membership, and falsity-membership functions is defined as 𝑇̂𝐴𝑁𝑉(x) = 

[T-, T+], 𝐼𝐴𝑁𝑉(x) = [I-, I+] and 𝐹̂𝐴𝑁𝑉(x) = [F-, F+], where (1) T+ = 1 − F−, (2) F+ = 1 − T− 

and (3) −0 ≤ T− + I− + F− ≤ 2+. 

 

Definition2.5:[8 ] Let U be an initial universal set and let E be a set of parameters. Let 

P(U) denotes the power set of all  subsets of U and let A⊆E. A collection of pairs (f, A) 

is called a soft set over U, where f is a mapping given by f :A → P(U). 

 

Definition 2.6. [1] A neutrosophic vague set ANV(NVS in short) on the universe of 

discourse X written as ANV = {<x; 𝑇̂𝐴𝑁𝑉(x); 𝐼𝐴𝑁𝑉(x); 𝐹̂𝐴𝑁𝑉(x)>; xX} whose truth-

membership, indeterminacy-membership, and falsity-membership functions is defined 

as 𝑇̂𝐴𝑁𝑉(x) = [T-, T+], 𝐼𝐴𝑁𝑉(x) = [I-, I+] and 𝐹̂𝐴𝑁𝑉(x) = [F-, F+], where (1) T+ = 1 − F−, 

(2) F+ = 1 − T− and (3) −0 ≤ T− + I− + F− ≤ 2+. 

 

Definition 2.7. [1] If ΨNV is a NVS of the universe U, where ∀ui∈U, 𝑇̂𝛹 𝑁𝑉(x) = [1, 1], 

𝐼𝛹𝑁𝑉(x)= [0, 0], 𝐹̂𝛹𝑁𝑉(x)= [0, 0], then ΨNV is called a unit NVS, where 1 ≤ i ≤ n. If  

NV is a NVS of the universe U, where ∀ui∈U, 𝑇̂𝛹𝑁𝑉(x) = [0, 0], 𝐼𝛹𝑁𝑉(x) = [1, 1], 

𝐹̂𝛹𝑁𝑉(x) = [1, 1], then NV is called a zero NVS, where 1 ≤ i ≤ n. 
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Definition 2.8.[1]  Let ANV and BNV be two NVSs of the universe U. If ∀ui∈U, (1) 

𝑇̂𝐴𝑁𝑉(ui) = 𝑇̂𝐵𝑁𝑉(ui), (2) 𝐼𝐴𝑁𝑉(ui) =  𝐼𝐵𝑁𝑉(ui) and (3) 𝐹̂𝐴𝑁𝑉(ui) =  𝐹̂𝐵𝑁𝑉(ui), then the 

NVS ANV is equal to BNV , denoted by ANV = BNV , where 1 ≤ i ≤ n. 

 

Definition 2.9. [1] Let ANV and BNV be two NVSs of the universe U. If ∀ui∈U, (1) 

𝑇̂𝐴𝑁𝑉(ui) ≤ 𝑇̂𝐵𝑁𝑉(ui), (2)𝐼𝐴𝑁𝑉(ui) ≥𝐼𝐵𝑁𝑉(ui) and (3)𝐹̂𝐴𝑁𝑉(ui) ≥ 𝐹̂𝐵𝑁𝑉(ui), then the NVS 

ANV is included by BNV , denoted by ANV⊆ BNV , where 1 ≤ i ≤ n. 

 

Definition 2.10. [1] The complement of a NVS ANV is denoted by Ac and is defined by  

𝑇 𝑐̂𝐴𝑁𝑉(x) = [1 − T+, 1 − T−], 

𝐼𝑐̂𝐴𝑁𝑉(x) = [1 − I+, 1 − I−], and 

𝐹𝑐̂𝐴𝑁𝑉(x) = [1 − F+, 1 − F−]. 

 

Definition 2.11.[ 1] The union of two NVSs ANV and BNV is a NVS CNV , written as CNV 

= ANV∪ BNV , whose truth-membership, indeterminacy-membership and false-

membership functions are related to those of ANV and BNV given by  

𝑇𝐶𝑁𝑉(𝑥)=  [max (𝑇𝐴𝑁𝑉𝑥
− , 𝑇𝐵𝑁𝑉𝑥

− ), max (𝑇𝐴𝑁𝑉𝑥
+ , 𝑇𝐵𝑁𝑉𝑥

+ )] 

𝐼𝐶𝑁𝑉(𝑥)=  [min (𝐼𝐴𝑁𝑉𝑥
− , 𝐼𝐵𝑁𝑉𝑥

− ), min (𝐼𝐴𝑁𝑉𝑥
+ , 𝐼𝐵𝑁𝑉𝑥

+ )] and 

𝐹𝐶𝑁𝑉(𝑥)=  [min (𝐹𝐴𝑁𝑉𝑥
− , 𝐹𝐵𝑁𝑉𝑥

− ), min (𝐹𝐴𝑁𝑉𝑥
+ , 𝐹𝐵𝑁𝑉𝑥

+ )] 

 

Definition 2.12. [1 ]  The intersection of two NVSs ANV and BNV is a NVS CNV , written 

as HNV = ANV ∩ BNV , whose truth-membership, indeterminacy-membership and false-

membership functions are related to those of ANV and BNV given by 

𝑇𝐻𝑁𝑉(𝑥)=  [min(𝑇𝐴𝑁𝑉𝑥
− , 𝑇𝐵𝑁𝑉𝑥

− ), min (𝑇𝐴𝑁𝑉𝑥
+ , 𝑇𝐵𝑁𝑉𝑥

+ )] 

𝐼𝐻𝑁𝑉(𝑥)=  [max (𝐼𝐴𝑁𝑉𝑥
− , 𝐼𝐵𝑁𝑉𝑥

− ), max (𝐼𝐴𝑁𝑉𝑥
+ , 𝐼𝐵𝑁𝑉𝑥

+ )] and 

𝐹𝐻𝑁𝑉(𝑥)=  [max (𝐹𝐴𝑁𝑉𝑥
− , 𝐹𝐵𝑁𝑉𝑥

− ), max (𝐹𝐴𝑁𝑉𝑥
+ , 𝐹𝐵𝑁𝑉𝑥

+ )] 

 

Definition 2.13[16] Let X be a nonempty set and I the unite interval [0, 1]. A pythagorean 

fuzzy set is an object having the form A = {(x, 𝜇𝐴(𝑥), 𝛾𝐴(𝑥)): x∈ 𝑋}, where the function 

𝜇𝐴: 𝑋 → [0, 1] and 𝛾𝐴: 𝑋 → [0, 1] denote the respectively degree of membership and 

degree of non-membership of each element 𝑥 ∈ 𝑋 to the set A and  0≤ (𝜇𝐴(𝑥))
2 +

(𝛾𝐴(𝑥))
2 ≤ 1 for each 𝑥 ∈ 𝑋. Supposing, 0 ≤ (𝜇𝐴(𝑥))

2 + (𝛾𝐴(𝑥))
2 ≤ 1, then the degree 
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of indeterminency of 𝑥 ∈ 𝑋 to A is denoted by 𝜋𝐴(𝑥) =

√(𝜇𝐴(𝑥))2 + (𝛾𝐴(𝑥))2&𝜋𝐴(𝑥) ∈ [0, 1]. 
 

Definition 2.14[3] Let X be a nonempty set (Universe). A pythagorean neutrosophic set 

with truth, falsity an dependent neutrosophic components [PNS] an a non-empty set X is 

an object of the form A = {(x, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥), 𝛿𝐴(𝑥)): x∈ 𝑋} where 𝜇𝐴(𝑥), 𝜈𝐴(𝑥),
𝛿𝐴(𝑥) ∈ [0, 1], 0 ≤ (𝜇𝐴(𝑥))

2 + (𝜈𝐴(𝑥))
2 + (𝛿𝐴(𝑥))

2 ≤ 2 for all 𝑥 ∈ 𝑋. Where 𝜇𝐴(𝑥) is 

the degree of membership, 𝜈𝐴(𝑥) degree of indeterminacy and, 𝛿𝐴(𝑥) degree of non-

membership. Here 𝜇𝐴(𝑥) and 𝛿𝐴(𝑥) are dependent component and 𝜈𝐴(𝑥) is independent 

component. 

 

Definition 2.15[3] Let X be a nonempty set and I be the unit interval [0, 1]. A pythagorean 

neutrosophic set with T and F are dependent neutrosophic components [PNS] A and B 

of the form 

A = {(x, 𝜇𝐴(𝑥), 𝜈𝐴(𝑥), 𝛿𝐴(𝑥)): x∈ 𝑋} and B = {(x, 𝜇𝐵(𝑥), 𝜈𝐵(𝑥), 𝛿𝐵(𝑥)): x∈ 𝑋} then  

1) 𝐴𝑐 = {(x, 𝛿𝐴(𝑥), 𝜈𝐴(𝑥), 𝜇𝐴(𝑥)): x∈ 𝑋} 

2) 𝐴 ∪ 𝐵 = {(x, max {𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, max {𝜈𝐴(𝑥), ν𝐵(𝑥)}, min {𝛿𝐴(𝑥), 𝛿𝐵(𝑥)}): x∈ 𝑋} 

3) 𝐴 ∩ 𝐵 = {(x, min {𝜇𝐴(𝑥), 𝜇𝐵(𝑥)}, min {𝜈𝐴(𝑥), ν𝐵(𝑥)}, max {𝛿𝐴(𝑥), 𝛿𝐵(𝑥)}): x∈ 𝑋} 

 

3. Pythagorean Neutrosophic Vague Set.   

 

Definition 3.1 Let X be a nonempty set. A pythagorean neutrosophic vague set with T 

and F are dependent neutrosophic components [PNVS]  

𝐴𝑃𝑁𝑉 = {(x, 𝑇𝐴𝑃𝑁𝑉(𝑥), 𝐼𝐴𝑃𝑁𝑉(𝑥), 𝐹𝐴𝑃𝑁𝑉(𝑥)): x∈ 𝑋} where truth membership, 

indeterminacy membership and falsity membership function is defined as  

𝑇𝐴𝑃𝑁𝑉(𝑥)= [𝑇+, 𝑇−], 𝐼𝐴𝑃𝑁𝑉(𝑥)= [𝐼+, 𝐼−] and 𝐹𝐴𝑃𝑁𝑉(𝑥)= [𝐹+, 𝐹−] 

Where 1)𝑇+=1-𝐹−, 2) 𝐹+=1-𝑇− and 3) 0≤ (𝑇−)2+(𝐼−)2+(𝐹−)2 ≤ 2. 

 

Example 3.2.Let X={u1, u2, u3} be a set of universe. Then the PNV set  𝐴𝑃𝑁𝑉 is as 

follows 𝐴𝑃𝑁𝑉 = {
𝑢1

[0.3,0.5],[0.5,0.5],[0.5,0.7]
,

𝑢2

[0.3,0.7],[0.4,0.6],[0.3,0.7]
 ,

𝑢3

[0.4,0.7],[0.4,0.6],[0.3,0.6]
} 

satisfies (1), (2) and (3) of definition 3.1 

 

(a) 0≤ (0.3)2+(0.5)2+(0.5)2 = 0.09 + 0.25 + 0.25 = 0.59 ≤ 2. 
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(b) 0≤ (0.3)2+(0.4)2+(0.3)2 = 0.09 + 0.16 + 0.09 = 0.34 ≤ 2. 

(c) 0≤ (0.4)2+(0.4)2+(0.3)2 = 0.16 + 0.16 + 0.09 = 0.41 ≤ 2. 

Note: In particular, PNV set  𝐴𝑃𝑁𝑉 may be as follows  

𝐴𝑃𝑁𝑉= = {
𝑢1

[0,1],[0,1],[0,1]
,

𝑢2

[0,1],[0,1],[0,1]
 ,

𝑢3

[0,1],[0,1],[0,1]
} 

Then we have the condition 0 ≤ (𝑇+)2+(𝐼+)2+(𝐹+)2 ≤ 3 

 

Definition 3.3 Let APNV and BPNV be two PNV sets of the universal set U. If ∀𝑢𝑖 ∈ 𝑈 

1) 𝑇𝐴𝑃𝑁𝑉(𝑢𝑖) = 𝑇𝐵𝑃𝑁𝑉(𝑢𝑖) 

2) 𝐼𝐴𝑃𝑁𝑉(𝑢𝑖) = 𝐼𝐵𝑃𝑁𝑉(𝑢𝑖) and 

3) 𝐹𝐴𝑃𝑁𝑉(𝑢𝑖) = 𝐹𝐵𝑃𝑁𝑉(𝑢𝑖) 

Then the PNV sets APNVis equals to PNV set BPNV, denoted by APNV =BPNV, where 1≤ 𝑖 ≤
𝑛 

Definition 3.4 Let APNV and BPNV be two PNV sets of the universal set U. If ∀𝑢𝑖 ∈ 𝑈 

1) 𝑇𝐴𝑃𝑁𝑉(𝑢𝑖) ≤ 𝑇𝐵𝑃𝑁𝑉(𝑢𝑖) 

2) 𝐼𝐴𝑃𝑁𝑉(𝑢𝑖) ≥ 𝐼𝐵𝑃𝑁𝑉(𝑢𝑖) 

3) 𝐹𝐴𝑃𝑁𝑉(𝑢𝑖) ≥ 𝐹𝐵𝑃𝑁𝑉(𝑢𝑖) 

Then the PNV sets APNV is included in BPNV; denoted by APNV⊆BPNV, where 1≤ 𝑖 ≤ 𝑛. 

 

Definition 3.5 The compliment of a PNV set APNV is denoted by 𝐴𝑃𝑁𝑉
𝑐 and is defined by  

 

𝑇𝐴𝑃𝑁𝑉𝑐 (𝑥)= [1 − 𝑇+, 1 − 𝑇−], 𝐼𝐴𝑃𝑁𝑉𝑐 (𝑥)= [1 − 𝐼−, 1 − 𝐼+] and 𝐹𝐴𝑃𝑁𝑉𝑐 (𝑥)= [1 − 𝐹−, 

1 − 𝐹+] 

 

Example 3.6 Consider the example 3.2 

 Then𝐴𝑃𝑁𝑉
𝑐  = {

𝑢1

[0.5,0.7],[0.5,0.5],[0.3,0.5]
,

𝑢2

[0.7,0.3],[0.4,0.6],[0.3,0.7]
 ,

𝑢3

[0.3,0.6],[0.4,0.6],[0.4,0.7]
} 

Note: The example 3.6 satisfies the definition 3.5 with the conditions 

 0≤ (𝑇−)2+(𝐼−)2+(𝐹−)2 ≤ 3. 

0≤ (𝑇+)2+(𝐼+)2+(𝐹+)2 ≤ 3. 
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Definition 3.7 Pythagorean Neutrosophic Vague Soft Set. 

Let U be a universal set. E be a set of parameters and 𝐴 ⊆ 𝐸. Let PNVset(U) denotes the 

set of all Pythagorean neutrosophic vague set of U. Then the pair (𝑓, 𝐴) is called 

Pythagorean neutrosophic vague soft set (PNVS set in short) over U. Here 𝑓 is a 

mapping  𝑓: 𝐴 → 𝑃𝑁𝑉 𝑠𝑒𝑡(𝑢). The collection of all Pythagorean neutrosophic vague soft 

sets over 𝑈 is denoted by𝑃𝑁𝑉𝑆 𝑠𝑒𝑡(𝑈). 
 

Example 3.8 Let 𝑈 = {𝑢1, 𝑢2, 𝑢3}, 𝐸 = {𝑒1, 𝑒2}. Then Pythagorean neutrosophic  vague 

soft sets 𝐴1 and 𝐴2 over 𝑈 are as follows- 

A1= [(𝑒1, {(𝑢1, [0.3, 0.5], [0.5, 0.5], [0.5, 0.7] ), (𝑢2, [0.2, 0.6], [0.6, 0.7], [0.4, 0.8] ),  
(𝑢3, [0.4, 0.6], [0.3, 0.4], [0.4, 0.6] )  }), 

(𝑒2, {(𝑢1, [0.5, 0.6], [0.3, 0.4], [0.4, 0.5], ), (𝑢2, [0.3, 0.4], [0.6, 0.8], [0.6, 0.7]),  
(𝑢3, [0.5, 0.6], [0.7, 0.8], [0.4, 0.5] )  }]. 
 

𝐴2 = [(𝑒1, {(𝑢1, [0.4, 0.5], [0.3, 0.4], [0.5, 0.6], ), (𝑢2, [0.3, 0.7], [0.5, 0.6], [0.3, 0.7]),  
(𝑢3, [0.5, 0.7], [0.2, 0.3], [0.3, 0.5], )  }), 

(𝑒2, {(𝑢1, [0.6, 0.7], [0.2, 0.4], [0.3, 0.4], ), (𝑢2, [0.4, 0.5], [0.5, 0.7], [0.5, 0.6]),  
(𝑢3, [0.6, 0.7], [0.5, 0.7], [0.3, 0.4] ) }  ]. 
 

Definition 3.9: An empty Pythagorean neutrosophic  vague soft set ∅ in 𝑈 is defined as 

∅ = {(𝑒, {(𝑢, [0, 0], [0, 0], [1, 1]) }: 𝑒 ∈ 𝐸and 𝑢 ∈ 𝑈}. 
 

Definition 3.10: An absolute Pythagorean neutrosophic  vague soft set 𝐼 in 𝑈 is defined 

as 

𝐼 = {(𝑒, {(𝑢, [1, 1], [1, 1], [0, 0] ) }: 𝑒 ∈ 𝐸 and 𝑢 ∈ 𝑈}. 
Definition 3.11 𝐶𝑖={e, (u, 𝑇

𝐶𝑃𝑁𝑉𝑆
𝑖 , 𝐼

𝐶𝑃𝑁𝑉𝑆
𝑖 , 𝐹

𝐶𝑃𝑁𝑉𝑆
𝑖 ): u∈ 𝑈, 𝑒 ∈ 𝐸} where i=1, 2 be the 

pythagorean neutrosophic vague soft set over U. Then 𝐶1is pythagorean neutrosophic 

vague softsubset of𝐶2 is defined by 𝐶1 ⊆ 𝐶2 if  

𝑇𝐶𝑃𝑁𝑉𝑆1 ≤ 𝑇𝐶𝑃𝑁𝑉𝑆2  , 𝐼𝐶𝑃𝑁𝑉𝑆1 ≥ 𝐼𝐶𝑃𝑁𝑉𝑆2 , 𝐹𝐶𝑃𝑁𝑉𝑆1 ≥ 𝐹𝐶𝑃𝑁𝑉𝑆2  

 
Example 3.12 Consider the example 3.8 Here,𝐴1 ⊆ 𝐴2 as per our definition 3.12. 

Definition 3.13 Let A be a pythagorean neutrosophic vague soft set over U. Then the 

compliment of A is defined by Ac is defined by  

𝐴𝑐={e, (u, 𝑇𝐴𝑃𝑁𝑉𝑆
𝑐 , 𝐼𝐴𝑃𝑁𝑉𝑆

𝑐 , 𝐹𝐴𝑃𝑁𝑉𝑆
𝑐 ): u∈ 𝑈, 𝑒 ∈ 𝐸} 
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𝑇𝐴𝑃𝑁𝑉𝑆
𝑐 (u) = [(1-𝑇+(𝑢)), (1-𝑇−(𝑢))] 

𝐼𝐴𝑃𝑁𝑉𝑆
𝑐 (u) = [(1-𝐼+(𝑢)), (1-𝐼−(𝑢))] 

𝐹𝐴𝑃𝑁𝑉𝑆
𝑐 (u) = [(1-𝐹+(𝑢)), (1-𝐹−(𝑢))] 

 

Example 3.14 Let U={u1, u2}and E ={e1, e2}then the pythagorean neutrosophic vague 

soft set A is  

A = [(e1, {(u1, [0.1, 0.3], [0.2, 0.4], [0.7, 0.9])}, {(u2, [0.6, 0.8], [0.3, 0.5], [0.2, 0.4])}, 

(e2, {(u1, [0.7, 0.9], [0.2, 0.5], [0.1, 0.3])}, {(u2, [0.8, 0.9], [0.5, 0.6], [0.1, 0.2])}] Then 

the compliment of A is defined by Ac is as follows 

Ac = [(e1, {(u1, [0.7, 0.9], [0.6, 0.8], [0.1, 0.3])}, {(u2, [0.2, 0.4], [0.5, 0.7], [0.6, 0.8])}, 

(e2, {(u1, [0.1, 0.3], [0.5, 0.8], [0.7, 0.9])}, {(u2, [0.1, 0.2], [0.4, 0.5], [0.8, 0.9])}]   

Definition 3.15 

𝐴𝑖={e, (u, 𝑇
𝐴𝑃𝑁𝑉𝑆
𝑖 , 𝐼

𝐴𝑃𝑁𝑉𝑆
𝑖 , 𝐹

𝐴𝑃𝑁𝑉𝑆
𝑖 ): u∈ 𝑈, 𝑒 ∈ 𝐸} where i=1, 2 be the two pythagorean 

neutrosophic vague soft set over U, then the union and intersection of 𝐴1 and 𝐴2 of two 

pythagorean neutrosophic  vague soft set are defined as follows: 

(a) 𝐴1 ∪ 𝐴2 = 𝐴3 

                   = {𝑒, (𝑢, 𝑇𝐴𝑃𝑁𝑉𝑆
3 , 𝐼𝐴𝑃𝑁𝑉𝑆

3 , 𝐹𝐴𝑃𝑁𝑉𝑆
3 )} 

where, 

𝑇𝐴𝑃𝑁𝑉𝑆
3 (u) = [(𝑇

𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∨ (𝑇

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝑇

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∨ (𝑇

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 

𝐼𝐴𝑃𝑁𝑉𝑆
3 (u) = [(𝐼

𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∧ (𝐼

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝐼

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∧ (𝐼

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 

𝐹𝐴𝑃𝑁𝑉𝑆
3 (u) = [(𝐹

𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∧ (𝐹

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝐹

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∧ (𝐹

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 

(b) 𝐴1 ∩ 𝐴2 = 𝐴4 

                   = {𝑒, (𝑢, 𝑇𝐴𝑃𝑁𝑉𝑆4 , 𝐼𝐴𝑃𝑁𝑉𝑆4 , 𝐹𝐴𝑃𝑁𝑉𝑆4 )} 

where, 

𝑇𝐴𝑃𝑁𝑉𝑆4 (u) = [(𝑇
𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∧ (𝑇

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝑇

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∧ (𝑇

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 

𝐼𝐴𝑃𝑁𝑉𝑆4 (u) = [(𝐼
𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∨ (𝐼

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝐼

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∨ (𝐼

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 

𝐹𝐴𝑃𝑁𝑉𝑆4 (u) = [(𝐹
𝐴𝑃𝑁𝑉𝑆
1
− (𝑢)) ∨ (𝐹

𝐴𝑃𝑁𝑉𝑆
2
− (𝑢)), (𝐹

𝐴𝑃𝑁𝑉𝑆
1
+ (𝑢)) ∨ (𝐹

𝐴𝑃𝑁𝑉𝑆
2
+ (𝑢))] 
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Definition 3.16 Let A={e, (u, 𝑇𝐴𝑃𝑁𝑉(𝑢), 𝐼𝐴𝑃𝑁𝑉(𝑢), 𝐹𝐴𝑃𝑁𝑉(𝑢)): ): u∈ 𝑈, 𝑒 ∈ 𝐸} be a 

pythagorean neutrosophic vague soft set over U. Then aggregation pythagorean 

neutrosophic vague softoperator denoted by Aagg is denoted as 

Aagg={
[𝛿𝐴
+, 𝛿𝐴

−]

𝑢
∶ 𝑢 ∈ 𝑈} 

where [𝛿𝐴
+,  𝛿𝐴

−] = 
1

2|𝐸×𝑈|
[∑ ([1, 1] − 𝐼𝑒(𝑢)[𝑇𝑒 − 𝐹𝑒(𝑢)]𝑒∈𝐸  

where 𝐼𝑒(𝑢) = [𝐼𝑒
+(𝑢) − 𝐼𝑒

−(𝑢)],  
𝑇𝑒(𝑢) = [𝑇𝑒

+(𝑢) − 𝑇𝑒
−(𝑢)] 

𝐹𝑒(𝑢) = [𝐹𝑒
+(𝑢) − 𝐹𝑒

−(𝑢)] 
|𝐸 × 𝑈|is the cardinality of 𝐸 × 𝑈. 

 

4. Application of pythagorean neutrosophic vague soft set. 

In our daily life we face problems in decision making such as education, economy, 

management, politics and technology. The results for education to choose the best college 

education. In the selection of college teaching education, the evaluation of teacher 

education is carried out according to various standards of experts. 

There are various studies, primarily conducted that have investigated the reasons why 

parents select a college, which they think best suit their college students needs and 

parental aspirations for their college student. We identify a factor regarded as parental 

decision making: Academic Factor - divided into three identified elements namely 

Campus Environment, Academic Quality, and Career Opportunities. Our goal is to select 

the optimal one out of a number of alternatives based on the assessment of experts against 

the criteria. 

A parent's committee intends to choose popular college education. Here the committee 

intends to choose three colleges U={u1, u2 , u3}. The score of the college education 

evaluated by the experts is represented by E={𝑒1 = Popular Environments, e2 = 

Academic quality,  e3 = Career Opportunity} Algorithm 

1. First, we construct the pythagorean neutrosophic vague soft set on U. 

2. We compute the pythagorean neutrosophic vague soft set aggregation operator. 

3. Average of each interval and find |Aagg|. (The numerical value) 

4. Find the optimum value on U. Assume that the set of colleges U={u1, u2 , u3} which 

may be characterized by a set of parameters E ={e1, e2, e3} 
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(a) The parents committee constract a pythagorian neutrosophic vague soft set A over U 

as 

A = [{(e1, (u1, [0.8, 0.9], [0.5, 0.7], [0.1, 0.2]), (u2, [0.5, 0.7], [0.4, 0.6], [0.3, 0.5]), (u3, 

[0.7, 0.9], [0.2, 0.4], [0.1, 0.3])}, {e2, (u1, [0.5, 0.7], [0.4, 0.6], [0.3, 0.5]), (u2, [0.7, 0.9], 

[0.4, 0.6], [0.1, 0.3]), (u3, [0.6, 0.8], [0.8, 0.9], [0.2, 0.4])}, {e3, (u1, [0.7, 0.9], [0.2, 0.4], 

[0.1, 0.3]), (u2, [0.6, 0.8], [0.4, 0.6], [0.2, 0.4]), (u3, [0.5, 0.7], [0.5, 0.7], [0.3, 0.5])}] 

(b) Then we find the pythagorean neutrosophic vague soft set aggregation operator Aagg 

of A as follows:  

For u1 
1

18
[[1, 1]-[0.5, 0.7]([0.8, 0.9]-[0.1, 0.2])+[1, 1]-[0.4, 0.6]([0.5, 0.7]-[0.3, 0.5])+[1, 1]-[0.2, 

0.4]([0.7, 0.9]-[0.1, 0.3])] 

For u2 
1

18
[[1, 1]-[0.4, 0.6]([0.5, 0.7]-[0.3, 0.5])+[1, 1]-[0.4, 0.6]([0.7, 0.9]-[0.1, 0.3])+[1, 1]-[0.4, 

0.6]([0.6, 0.8]-[0.2, 0.4])] 

For u3 
1

18
[[1, 1]-[0.2, 0.4]([0.7, 0.3]-[0.1, 0.3])+[1, 1]-[0.8, 0.9]([0.6, 0.8]-[0.2, 0.4])+[1, 1]-[0.5, 

0.7]([0.5, 0.7]-[0.3, 0.5])] 

(c) We take the average of each interval i.e [1, 1] &(𝑢) = [𝑇−(𝑢) − 𝑇+(𝑢)]𝐼(𝑢) =
[𝐼−(𝑢) − 𝐼+(𝑢)], 𝐹(𝑢) = [𝐹−(𝑢) − 𝐹+(𝑢)] 

(d) Then |Aagg| = 
0.1277

𝑢1
, 
0.1333

𝑢2
, 
0.1311

𝑢3
 

(e) Finally the parent’s committee choose the college 𝑢2, since |Aagg| has the maximum 

degree 0.1333 among the colleges. . Here we need less calculation and few steps to get our 
result. Validity of this method is better than that of previous work. 
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5. Conclusion  

In this paper, we introduce the pythagorean neutrosophic vague soft set. It is a 

combination of soft set and the pythagorean neutrosophic vague set. We develop a 

decision making method based on pythagorean  neutrosophic  vague soft set. A numerical 

example has been given. Some new operations on pythagorean neutrosophic vague soft 

set have been designed. For further study, it may be applied to real world problems with 

realistic data and extend proposed algorithm to other decision making problem with 

vagueness and uncertainty. Here we need less calculation and few steps to get our result 
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Abstract: 

In this paper, we would introduce sequence of convergence with the help of neutrosophic norm 

in neutrosophic normed spaces. We wish to introduce the notion of point wise convergence and 

uniform convergence of sequences of functions with the help of neutrosophic norm in 

neutrosophic normed spaces. Some basic properties and characterization theorems of these 

concepts would be investigated in neutrosophic normed spaces. Our purpose is also to introduce 

I - convergence, point wise and uniform I - convergence and  I - Cauchy sequence of sequences 

of functions in neutrosophic normed space and to investigate the relationships among the 

concepts such as I - convergence, statistical convergence and the usual convergence of sequences 

of functions in neutrosophic normed spaces.  

Keywords: I - point wise convergence, I - uniform convergence, sequence of functions, 

neutrosophic normed space.  
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1. Introduction:  

Human beings are always dealing with many real - life problems due to uncertainties which 

cannot always be explained by classic methods. To handle such situations, Zadeh [26] introduced 

the concept of fuzzy set theory which emerged as one of the most active areas of research in 

many branches of mathematics and engineering. But it is not sufficient to explain the 

indeterminacy states because it has only membership (truth) function. Thereafter, Atanassov [1] 

introduced the notion of intuitionistic fuzzy sets theory which deals with three states, such as 

truth, falsity, and indeterminacy. However, these states are dependent on each other. In order to 

solve real life problems on decision making under uncertainty, Smarandache [22] introduced the 

notion of neutrosophic set where each element had three associated defining functions, namely 

the membership function (T), the non - membership function (F) and the indeterminacy function 

mailto:2runu.dhar@gmail.com
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(I) defined on the universe of discourse X. These three functions are completely independent. 

Further investigation had been made by Smarandache [23] on the applications of the neutrosophic 

theory.  

Lots of researchers [4, 6, 17, 25] contributed themselves to apply the notion of fuzzy set theory 

successfully in studying sequence spaces with classical metrics. Intuitionistic fuzzy set theory 

was used in all areas where fuzzy set theory was studied. Park [18] defined intuitionistic fuzzy 

metric space which is a generalization of fuzzy metric space. Using the idea of intuitionistic fuzzy 

sets, Park [18] defined the notion of intuitionistic fuzzy metric spaces by the help of the 

continuous t - norms and the continuous t - conorms as a generalization of fuzzy metric space 

due to George and Veeramani [6]. Saadati [20] investigated on intuitionistic fuzzy normed 

spaces. On the other hand, the notion of statistical convergence for real number sequences was 

first introduced by Fast [5]. Using the concept of an ideal, Kostyrko et al. [14] introduced the 

notion of I - convergence which is a generalization of ordinary convergence and statistical 

convergence. The I - convergence provides a general framework to study the properties of various 

types of convergence. Karakus  ̧et al. [10] defined statistical convergence in intuitionistic fuzzy 

normed spaces (IFNS for short). Karakaya et al. [7] defined and studied I - convergence of 

sequences of functions in IFNS. Moreover, Karakaya et al. [8, 9] investigated 𝜆 - statistical 

convergence and lacunary statistical convergence of sequences of functions in IFNS respectively. 

More research works on I - convergence and statistical convergence can be found in [13, 15]. 

Bera and Mahapatra [2] introduced neutrosophic soft linear spaces (NSLSs). Thereafter, 

neutrosophic soft normed linear spaces (NSNLS) has been defined by Bera and Mahapatra [3]. 

In [3], neutrosophic norm, Cauchy sequence in NSNLS, convexity of NSNLS, metric in NSNLS 

were studied. Kirişci and Şimşek [12] introduced the notion of neutrosophic normed space (NNS) 

and defined statistical convergence with respect to NNS. Muralikrishna and Kumar [16] 

investigated on neutrosophic approach to normed linear space. Tripathy and Hazarika [24] 

introduced paranorm I - convergent sequence spaces. After getting motivations of these works, 

we shall introduce the notion on I - convergence of sequences of functions in NSS. We shall 

investigate some of their basic properties and relations with other convergence of sequences of 

functions. The paper reveals as follows. The next section briefly focuses some known definitions 

and results which are related for investigation. In section 3, we introduce the notions of different 

types of convergence of sequences of functions and investigate some basic properties and results 

in neutrosophic normed spaces. Section 4 indicates the conclusion of the work. 

 
2. Preliminaries: 

In this section, some known results and definitions would be procured for ready reference. 

Definition 2.1. [21] A binary operation 𝑜 : [0,1] × [0,1] → [0,1] is said to be a continuous t - 

norm (TN) if it satisfies the following conditions:  

(i) 𝑜 is associative and commutative,  
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(ii) 𝑜 is continuous,  

(iii) a 𝑜1 = a for all a ∈ [0,1], 

(iv)  a 𝑜 c ≤ b 𝑜 d whenever a ≤ b and c ≤ d for each a, b, c, d ∈ [0,1]. 

For example, a 𝑜 b = a.b is a continuous t - norm. 

Definition 2.2. [21] A binary operation ● : [0,1] × [0,1] → [0,1] is said to be a continuous t - 

conorm (TC) if it satisfies the following conditions:  

(i) ● is associative and commutative,  

(ii) ● is continuous,  

(iii) a ● 1 = a for all a ∈ [0,1], 

(iv)  a ● c ≤ b ● d whenever a ≤ b and c ≤ d for each a, b, c, d ∈ [0,1]. 

For example, a ● b = min {a + b, 1}is a continuous t - conorm. 

Definition 2.3. [19] Let 𝑜 be a continuous t - norm, ● be a continuous t - conorm and 𝑋 be a 

linear space over the field IF (ℝ or ℂ). If µ and ν are fuzzy sets on 𝑋 × (0,∞) satisfying the 

following conditions, the five-tuple (𝑋, µ, 𝜈, 𝑜,●) is said to be an intuitionstic fuzzy normed 

spaces (IFNS) and (µ, 𝜈) is called an intuitionistic fuzzy norm. For every 𝑥, 𝑦 ∈  𝑋 𝑎𝑛𝑑 𝑠, 𝑡 >
 0,     

(i) µ (𝑥, 𝑡)  + 𝜈 (𝑥, 𝑡)  ≤  1, 
(ii)  µ (𝑥, 𝑡)  >  0, 
(iii) µ (𝑥, 𝑡)  =  1 ⟺  𝑥 =  0, 

(iv) µ (𝑎𝑥, 𝑡) =  µ (𝑥,
𝑡

|𝑎|
) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ≠ 0, 

(v) µ (𝑥, 𝑡)𝑜 µ (𝑦, 𝑠)  ≤  µ (𝑥 + 𝑦, 𝑡 + 𝑠), 
(vi) µ (𝑥, . ) ∶  (0,∞)  →  [0,1] 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 
(vii) lim

𝑡→∞
µ (𝑥, 𝑡)  =  1 𝑎𝑛𝑑 lim

𝑡→0
µ (𝑥, 𝑡) =  0, 

(viii) 𝜈 (𝑥, 𝑡)  <  1, 
(ix) 𝜈 (𝑥, 𝑡)  =  0 ⟺  𝑥 =  0, 

(x) 𝜈 (𝑎𝑥, 𝑡) =  𝜈 (𝑥,
𝑡

|𝑎|
) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑎 ≠  0, 

(xi) 𝜈 (𝑥, 𝑡)● 𝜈 (𝑦, 𝑠)  ≥  𝜈 (𝑥 + 𝑦, 𝑡 + 𝑠), 
(xii) 𝜈 (𝑥, . ) ∶  (0,∞)  →  [0,1]𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠. 
(xiii) lim

𝑡→∞
𝑣 (𝑥, 𝑡) = 1 𝑎𝑛𝑑 lim

𝑡→∞
𝑣 (𝑥, 𝑡)  = 0.  

Definition 2.4. (One may refer to Kirisci and Simsek [12]) If 𝑋 is a non - empty set, then a family 

of set 𝐼 ⊂  𝑃(𝑋) is called an ideal in 𝑋 if and only if  

(i) For each 𝐴, 𝐵 ∈  𝐼, we have 𝐴 ∪ 𝐵 ∈ 𝐼;  
(ii) For each 𝐴 ∈ 𝐼 and 𝐵 ⊂  𝐴, we have 𝐵 ∈ 𝐼. 

Definition 2.5. (One may refer to Kirisci and Simsek [12])] Let 𝑋 be a non - empty set. A non - 

empty family of sets ℱ ⊂  𝑃(𝑋) is called a filter on 𝑋 if and only if  

(i) 𝜃 ∉ ℱ; 
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(ii) For each 𝐴, 𝐵 ∈  𝐹 we have 𝐴 ∩ 𝐵 ∈  ℱ;  

(iii) For each 𝐴 ∈ ℱ and 𝐴 ⊂ 𝐵 we have 𝐵 ∈  ℱ.  

 

Definition 2.6. (One may refer to Kirisci and Simsek [12])] An ideal 𝐼 is called non - trivial if 

𝐼 ≠ 𝜃 and 𝑋 ∉ 𝐼. I ⊂ 2𝑋 is a non - trivial ideal if and only if F = F(I) = {X \ A : A ∈ I} is a filter 

on X. Also, a non - trivial ideal 𝐼 ⊂ 𝑃(𝑋) is called an admissible ideal in 𝑋 if and only if it 

contains all singletons i.e., if it contains {{𝑥} ∶ 𝑥 ∈ 𝑋}, i.e., I ⊃ {{𝑥}: 𝑥 ∈ 𝑋}. 

Definition 2.7. [11] Take F as a vector space, 𝑁 = {< 𝑢, 𝐺(𝑢), 𝐵(𝑢), 𝑌(𝑢) >: 𝑢 ∈ 𝐹}be a 

normed space (NS) such that 𝑁: 𝐹 × ℝ+ → [0,1]. Let o and ● show the continuous TN and 

continuous TC, respectively. If the following conditions are hold, then the four - tuple 𝑉 =
(𝐹, 𝑁, o,●) is called neutrosophic normed space (NNS). For all 𝑢, 𝑣, ∈ 𝐹 and 𝜆, 𝜇 > 0 and for 

each 𝜎 ≠ 0. 
(i) 0 ≤ 𝐺(𝜇, 𝜆) ≤ 1, 0 ≤ 𝛽(𝜇, 𝜆) ≤ 1, 0 ≤ 𝑌(𝜇, 𝜆) ≤ 1, ∀ 𝜆 ∈ ℝ+, 
(ii)  𝐺(𝜇, 𝜆) + 𝛽(𝜇, 𝜆) + 𝑌(𝜇, 𝜆) ≤ 3, (𝑓𝑜𝑟 𝜆 ∈ ℝ+), 
(iii) 𝐺(𝜇, 𝜆) = 1  (𝑓𝑜𝑟 𝜆 > 0) 𝑖𝑓𝑓 𝑢 = 0,  
(iv) 𝐺(𝑢, 𝑣, 𝜆) = 𝐺(𝑣, 𝑢, 𝜆)(𝑓𝑜𝑟 𝜆 > 0),  
(v) 𝐺(𝑢, 𝑣, 𝜆)o 𝐺(𝑣, 𝑢, 𝜆) ≤ 𝐺(𝑢, 𝑦, 𝜆 + 𝑢 (∀ 𝜆, 𝜇 > 0), 
(vi) 𝐺(𝑢, 𝑣, . ): [0,∞) → [0,1] 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 
(vii) lim𝜆→∞ 𝐺(𝑢, 𝑣, 𝜆) = 1 (∀ 𝜆 > 0) 
(viii) 𝐵(𝑢, 𝑣, 𝜆) = 0 (𝑓𝑜𝑟 𝜆 > 0) 𝑖𝑓𝑓 𝑢 = 𝑣, 
(ix) 𝐵(𝑢, 𝑣, 𝜆) = 𝐵(𝑣, 𝑢, 𝜆)(𝑓𝑜𝑟 𝜆 > 0),  
(x) 𝐵(𝑢, 𝑣, 𝜆)● 𝐵(𝑣, 𝑦, 𝜇) ≥ 𝐵(𝑢, 𝑦, 𝜆 + 𝜇)(∀ 𝜆, 𝜇 > 0), 
(xi)  𝐵(𝑢, 𝑣, . ): [0,∞) → [0,1]𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 
(xii) log𝜆→∞ 𝐵(𝑢, 𝑣, 𝜆) = 0 (∀ 𝜆 > 0), 
(xiii) 𝑌(𝑢, 𝑣, 𝜆) = 0 (𝑓𝑜𝑟 𝜆 > 0)𝑖𝑓𝑓 𝑢 = 𝑣, 
(xiv) 𝑌(𝑢, 𝑣, 𝜆) = 𝑌(𝑣, 𝑢, 𝜆)(∀ 𝜆 > 0), 
(xv) 𝑌(𝑢, 𝑣, 𝜆)● 𝑌(𝑣, 𝑦, 𝜇) ≥ 𝑌(𝑢, 𝑦, 𝜆 + 𝜇)(∀ 𝜆, 𝜇 > 0), 
(xvi) 𝐵(𝑢, 𝑣, . ): [0,∞) → [0,1]𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠, 
(xvii) lim𝜆→∞ 𝑌(𝑢, 𝑣, 𝜆) = 1 (∀ 𝜆 > 0) 
(xviii) 𝐼𝑓 𝜆 ≤ 0, 𝑡ℎ𝑒𝑛 𝐺(𝑢, 𝑣, 𝜆) = 0, 𝐵(𝑢, 𝑣, 𝜆) = 1 𝑎𝑛𝑑 𝑌(𝑢, 𝑣, 𝜆) = 1.  

Then 𝑁 = (𝐺, 𝐵, 𝑌) 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝑁𝑒𝑢𝑡𝑟𝑜𝑠𝑜𝑝ℎ𝑖𝑐 𝑁𝑜𝑟𝑚 (𝑁𝑁). 
 

3. I - convergence of sequences of functions in NNS: 

In this section, we would introduce the notion of I - convergence of sequences of functions and 

investigate their properties in NNS. 
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Definition 3.1. Let (𝐹, 𝑁, 𝑜,●) be a NNS, 𝑁 =  (𝐺, 𝐵, 𝑌) be neutrosophic norm and (𝑥𝑛) be a 

sequence in F. Sequence (𝑥𝑛) is said to be convergent to L ∈ F with respect to the neutrosophic 

norm (𝐺, 𝐵, 𝑌) if for every 𝜀 > 0 and 𝑡 >  0, there exists a positive integer 𝑛0 such that  

 𝐺 (𝑥𝑛 − 𝐿, 𝑡) >  1 − 𝜀, 𝐵(𝑥𝑛 − 𝐿, 𝑡) < 𝜀 𝑎𝑛𝑑  𝑌(𝑥𝑛 − 𝐿, 𝑡) < 𝜀 whenever n > 𝑛0 

In this case we write (G, B, Y) − lim𝑥𝑛 = 𝐿 𝑎𝑠 𝑛 → ∞. 
 

Definition 3.2. Let(𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let 𝑓𝑛  ∶  (𝐹, 𝑁, 𝑜,●)  →  (𝐺, 𝑁′, 𝑜,●) be a sequence of functions. 

The sequence (𝑓𝑛) is said to be pointwise neutrosophic convergent on F to a function 𝑓 with 

respect to (G, B, Y) if for each 𝑥 ∈  𝐹, the sequence (𝑓𝑛(𝑥)) is convergent to 𝑓(𝑥) with respect 

to (𝐺′, 𝐵′, 𝑌′) 
The sequence (𝑓𝑛) is said to be uniformly neutrosophic convergent on F to a function 𝑓 with 

respect to (G, B, Y) if for 0 < 𝑟 < 1, t> 0, there exists a positive integer 𝑛0 = 𝑛0(𝑟, 𝑡) such that 

∀x ∈ X and ∀ n > 𝑛0, 

𝐺(𝑓𝑛(𝑥) –  𝑓(𝑥), 𝑡) > 1 − 𝑟, 𝐵(𝑓𝑛(𝑥) –  𝑓(𝑥), 𝑡)  < 𝑟 , 𝑌(𝑓𝑛(𝑥) –  𝑓(𝑥), 𝑡) < 𝑟. 
 

Definition 3.3. Let 𝐼 ⊂  𝑃(𝑁) be a nontrivial ideal and (𝐹, 𝑁, 𝑜,●) be a NNS. A sequence 𝑥 =
 (𝑥𝑛) of elements in 𝐹 is said to I - convergent to 𝐿 ∈  𝐹 with respect to the neutrosophic norm 

(𝐺, 𝐵, 𝑌) if for each 𝜀 > 0 and 𝑡 >  0, the set  

{𝑛 ∈  ℕ ∶  𝐺 (𝑥𝑛 − 𝐿, 𝑡)  ≤  1 − 𝜀 𝑜𝑟 𝐵(𝑥𝑛 − 𝐿, 𝑡) ≥ 𝜀, 𝑌(𝑥𝑛 − 𝐿, 𝑡) ≥ 𝜀}  ∈  𝐼. 
In this case the element 𝐿 is called I - limit of the sequence (𝑥𝑛) with respect to the neutrosophic 

norm (G, B, Y) and we write 𝐼(G,   B,   Y) − 𝑙𝑖𝑚𝑥𝑛 = 𝐿. 

 

Definition 3.4. Let 𝐼 ⊂  𝑃(𝑁) be a nontrival ideal. Also let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be 

NNS and N = (G, B, Y) and 𝑁′ = (𝐺′,  𝐵′,  𝑌′) be respective NN. Let 𝑓𝑛  ∶  (𝐹, 𝑁, 𝑜,●)  →
 (𝐺, 𝑁′, 𝑜,●) be a sequence of functions. If for each 𝑥 ∈ 𝐹 and ∀𝜀 > 0, 𝑡 > 0. 

{𝑛 ∈  ℕ ∶  𝐺′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) ≤ 1 − 𝜀 𝑜𝑟 𝐵
′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) ≥  𝜀 𝑜𝑟 𝑌

′(𝑓𝑛 (𝑥) −
 𝑓 (𝑥), 𝑡)  ≥  𝜀}  ∈  𝐼 
then we say that the sequence (𝑓𝑛) is pointwise 𝐼 - convergent with respect to neutrosophic norm 

(𝐺, 𝐵, 𝑌) and we write it 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 → 𝑓. 

 

Lemma 3.5. Let (𝐹, 𝑁, 𝑜, ●) 𝑎𝑛𝑑 (𝐺,  𝑁′, 𝑜, ●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′,  𝐵′,  𝑌′) be respective NN. Let 𝑓𝑛  ∶  (𝐹, 𝑁, 𝑜,●)  →  (𝐺, 𝑁′, 𝑜,   ●) be a sequence of 

functions. Then for every 𝜀 >  0, for each 𝑥 ∈  𝑋 and 𝑡 >  0, the following statements are 

equivalent:  

(i)  I(𝐺,   𝐵,   𝑌) − 𝑓𝑛  →  𝑓 . 
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(ii) {𝑛 ∈  ℕ ∶  𝐺′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡 ≤  1 − 𝜀 } ∈ 𝐼 , {𝑛 ∈  ℕ ∶  𝐵
′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) ≥ 𝜀} ∈

 𝐼 𝑎𝑛𝑑 {𝑛 ∈  ℕ ∶  𝑌′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) ≥ 𝜀}  ∈  𝐼. 
(iii) {𝑛 ∈  ℕ ∶   𝐺′(𝑓𝑛(𝑥) − 𝑓 (𝑥), 𝑡) > 1 −  𝜀} ∈  ℱ(𝐼) ,  {𝑛 ∈ ℕ ∶  𝐵

′(𝑓𝑛(𝑥) − 𝑓 (𝑥), 𝑡) <
 𝜀} ∈ ℱ(𝐼) 𝑎𝑛𝑑 {𝑛 ∈ ℕ ∶  𝑌′(𝑓𝑛(𝑥) − 𝑓 (𝑥), 𝑡) <  𝜀} ∈ ℱ(𝐼). 

(iv) {𝑛 ∈ ℕ ∶  𝐺′(𝑓𝑛(𝑥) − 𝑓 (𝑥), 𝑡) > 1 − 𝜀} ∈  ℱ(𝐼) , {𝑛 ∈ ℕ ∶  𝐵′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) <
 𝜀} ∈  ℱ(𝐼) 𝑎𝑛𝑑 {𝑛 ∈ ℕ ∶  𝑌′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) < 𝜀} ∈ ℱ(𝐼). 

(v) 𝐼 − 𝑙𝑖𝑚𝐺′(𝑓𝑛(𝑥) − 𝑓 (𝑥), 𝑡) =  1 , 𝐼 − 𝑙𝑖𝑚𝐵
′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) =  0 𝑎𝑛𝑑 𝐼 −

𝑙𝑖𝑚𝑌′(𝑓𝑛(𝑥) −  𝑓 (𝑥), 𝑡)  =  0 

 

Proof. The proof is standard verification. 

 

Theorem 3.6.  Let (𝑓𝑛) and (𝑔𝑛) be two sequences of functions in a 

NNS (𝐹, 𝑁, 𝑜,●) 𝑤𝑖𝑡ℎ 𝑛𝑜𝑟𝑚 𝑁 = (𝐺, 𝐵, 𝑌). If 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 = 𝑓 and𝐼(𝐺,   𝐵,   𝑌) − 𝑔𝑛 = 𝑔, then 

𝐼(𝐺,   𝐵,   𝑌) − (𝛼𝑓𝑛 + 𝛽𝑔𝑛) = 𝛼 𝑓 + 𝛽𝑔 where 𝛼, 𝛽 ∈ ℝ 𝑜𝑟 ℂ. 

Proof. The proof is clear for 𝛼 =  0 and 𝛽 =  0. Now let 𝛼 ≠ 0 and 𝛽 ≠ 0. Since 𝐼(𝐺,   𝐵,   𝑌) −

𝑓𝑛 → 𝑓 and 𝐼(𝐺,   𝐵,   𝑌) − 𝑔𝑛 → 𝑔, for each 𝑥 ∈ 𝑋. 

 

𝐴1 =

{
 
 

 
 𝑛 ∈ 𝑁:𝐺′ (𝑓𝑛 − 𝑓(𝑥),

𝑡

2⌈𝛼⌉
) ≤ 1 − 𝜀

𝑜𝑟 𝐵′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2|𝛼|
) ≥ 𝜀

𝑜𝑟 𝑌′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2|𝛼|
) ≥ 𝜀

}
 
 

 
 

∈ 𝐼 

𝐴2 =

{
  
 

  
 𝑛 ∈ ℕ: 𝐺′(𝑔𝑥(𝑥) − 𝑔(𝑥),

𝑡

2⌈𝛽⌉
)

𝑜𝑟 𝐵′ (𝑔𝑛(𝑥) − 𝑔(𝑥),
𝑡

2|𝛽|
) ≥ 𝜀

𝑜𝑟 𝑌′ (𝑔𝑛(𝑥) − 𝑔(𝑥),
𝑡

2|𝛽|
) ≥ 𝜀

}
  
 

  
 

∈ 𝐼 

Define the set 𝐴 =  (𝐴1 ∪ 𝐴2), so 𝐴 belongs to 𝐼. It follows that 𝐴𝑐 is a non-empty set in ℱ(𝐼). 
We shall show that for each 𝑥 ∈ 𝑋 

 

𝐴𝑐 ⊂ {𝑛 ∈ ℕ ∶  𝐺′ ((𝛼 𝑓𝑛 + 𝛽𝑔𝑛) (𝑥) − (𝛼𝑓 + 𝛽𝑔) (𝑥), 𝑡)  >  1 − 𝜀 , 𝑛 ∈ ℕ
∶ 𝐵′ ((𝛼𝑓𝑛 + 𝛽𝑔𝑛) (𝑥) − (𝛼𝑓 + 𝛽𝑔) (𝑥), 𝑡) < 𝜀 𝑎𝑛𝑑 𝑛 ∈ ℕ
∶ 𝑌′ ((𝛼𝑓𝑛 + 𝛽𝑔𝑛)(𝑥) − (𝛼𝑓 + 𝛽𝑔)(𝑥), 𝑡) < 𝜀} 
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Let 𝑚 ∈ 𝐴𝑐, in this case  𝐺′(𝑓𝑚 (𝑥) − 𝑓(𝑥),
𝑡

2⌈𝛼⌉
) > 1 − 𝜀, 

    𝐵′ (𝑓𝑚 (𝑥) − 𝑓(𝑥),
𝑡

2⌈𝛼⌉
) < 𝜀, 

   and  𝑌′ (𝑓𝑚 (𝑥) − 𝑓(𝑥),
𝑡

2⌈𝛼⌉
) < 𝜀. 

    𝐺′ (𝑔𝑚 (𝑥) − 𝑔(𝑥),
𝑡

2⌈𝛽⌉
) >  1 − 𝜀, 

     𝐵′ (𝑔𝑚(𝑥) − 𝑔(𝑥),
𝑡

2⌈𝛽⌉
) <  𝜀, 

and  𝑌′ (𝑔𝑚(𝑥) − 𝑔(𝑥),
𝑡

2⌈𝛽⌉
) <  𝜀. 

  We have 

   𝐺′ ((𝛼𝑓𝑚 + 𝛽𝑔𝑚)(𝑥) − (𝛼 𝑓(𝑥)  + 𝛽𝑔(𝑥)), 𝑡) 

   ≥  𝐺′(𝛼𝑓𝑚(𝑥) − 𝛼 𝑓(𝑥),
𝑡

2
) 𝑜 𝐺′(𝛽𝑔𝑚(𝑥) − 𝛽𝑔(𝑥),

𝑡

2
) 

= 𝐺′ (𝑓𝑚 (𝑥) −  𝑓(𝑥),
𝑡

2⌈𝛼⌉
) 𝑜 𝐺′ (𝑔𝑚(𝑥) − 𝑔(𝑥),

𝑡

2⌈𝛽⌉
) 

   > (1 − 𝜀)𝑜(1 − 𝜀) 
   = (1 − 𝜀) 
    

𝐵′ ((𝛼𝑓𝑚 + 𝛽𝑔𝑚) (𝑥) − (𝛼 𝑓(𝑥)  + 𝛽𝑔(𝑥)), 𝑡) 

   ≤  𝐵′(𝛼𝑓𝑚(𝑥) − 𝛼𝑓(𝑥),
𝑡

2
)𝑜 𝐵′ (𝛽𝑔𝑚(𝑥) − 𝛽𝑔(𝑥),

𝑡

2
) 

   = 𝐵′ (𝑓𝑚(𝑥) − 𝑓(𝑥),
𝑡

2⌈𝛼⌉
) 𝑜 𝐵′( 𝑔𝑚(𝑥) − 𝑔(𝑥),

𝑡

2⌈𝛽⌉
)  

   <  𝜀 ● 𝜀 
   = 𝜀  

and   

𝑌′ ((𝛼𝑓𝑚 + 𝛽𝑔𝑚)(𝑥) − (𝛼𝑓(𝑥)  + 𝛽𝑔(𝑥)), 𝑡) 

   ≤ 𝑌′ (𝛼𝑓𝑚(𝑥) − 𝛼𝑓(𝑥),
 𝑡

2
)𝑜 𝑌′ (𝛽𝑔𝑚(𝑥) − 𝛽𝑔(𝑥),

𝑡

2
) 

   = 𝑌′ (𝑓𝑚(𝑥) − 𝑓(𝑥),
𝑡

2⌈𝛼⌉
) 𝑜  𝑌′( 𝑔𝑚(𝑥) − 𝑔(𝑥),

𝑡

2⌈𝛽⌉
)  

   <  𝜀 ● 𝜀 
   = 𝜀  

 

This implies that 

𝐴𝑐 ⊂ {𝑛 ∈ ℕ ∶  𝐺′ ((𝛼 𝑓𝑛 + 𝛽𝑔𝑛) (𝑥) − (𝛼𝑓 + 𝛽𝑔) (𝑥), 𝑡)  >  1 − 𝜀 , 𝑛 ∈ ℕ
∶ 𝐵′ ((𝛼𝑓𝑛 + 𝛽𝑔𝑛)(𝑥) − (𝛼𝑓 + 𝛽𝑔)(𝑥),
𝑡) < 𝜀 𝑎𝑛𝑑 𝑛 ∈ ℕ ∶ 𝑌′((𝛼𝑓𝑛 + 𝛽𝑔𝑛)(𝑥) − (𝛼𝑓 + 𝛽𝑔) (𝑥), 𝑡) < 𝜀} 

Since, ℱ(𝐼) is filter, it follows that the later set belongs to ℱ(𝐼). According to Lemma 3.5., 

𝐼(𝐺,   𝐵,   𝑌) − (𝛼𝑓𝑛 + 𝛽𝑔𝑛) → 𝛼𝑓 + 𝛽𝑔. 
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Definition 3.7. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let 𝑓𝑛  ∶  (𝐹, 𝑁, 𝑜,●)  →  (𝐺, 𝑁′ , 𝑜,●) be a sequence of functions. 

The sequence (𝑓𝑛) is a pointwise I - Cauchy sequence in NNS provided that for every 𝜀 > 0 and 

𝑡 > 0 there exists a number 𝑁 =  𝑁(𝜀, 𝑡, 𝑥) such that 

{

n ∈ ℕ ∶  G′(𝑓𝑛(x) − 𝑓𝑁(x), t) ≤ 1 − ε 

or 𝐵′(𝑓𝑛(x) − 𝑓𝑁(x), t) ≥  ε for each x ∈ X

or 𝑌′(𝑓𝑛(x) − 𝑓𝑁(x), t) ≥  ε for each x ∈ X

} ∈ 𝐼 

 

Theorem 3.8. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let  𝑓𝑛  ∶  (𝐹, 𝑁, 𝑜,●)  →  (𝐺, 𝑁′, 𝑜,●) be a sequence of 

functions. If (𝑓𝑛) is a pointwise 𝐼 − convergent with respect to neutrosophic norm (𝐺, 𝐵, 𝑌), 
then (𝑓𝑛) is a pointwise 𝐼 − Cauchy sequence with respect to neutrosophic norm (𝐺, 𝐵, 𝑌). 
 

Proof. Suppose that 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 → 𝑓 and let 𝜀 > 0, 𝑡 > 0. For a given 𝜀 > 0, choose 𝑠 >

0 such that (1 − 𝜀) 𝑜 (1 − 𝜀)  >  1 −  𝑠 and 𝜀 ● 𝜀 <  𝑠. Then for each 𝑥 ∈ 𝑋, 

𝐴𝑥(𝜀, 𝑡)  =

{
 
 

 
 𝑛 ∈ ℕ ∶ 𝐺′ (𝑓𝑛 − 𝑓(𝑥),

𝑡

 2
) ≤ 1 − 𝜀

𝑜𝑟 𝐵′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) ≥ 𝜀

𝑜𝑟 𝑌′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
 𝑡

2
) ≥ 𝜀 }

 
 

 
 

∈ 𝐼 

 

 

which implies that 

 

𝐴𝑥
𝑐 (𝜀, 𝑡) =

{
 
 

 
 𝑛 ∈ ℕ:𝐺′ (𝑓𝑛(𝑥) − 𝑓(𝑥),

𝑡

2
) > 1 − 𝜀

𝑜𝑟 𝐵′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) ≥ 𝜀

𝑜𝑟 𝑌′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
 𝑡

2
) ≥ 𝜀 }

 
 

 
 

∈ ℱ(𝐼) 

 

Let us choose 𝑁 ∈ 𝐴𝑥
𝑐  (𝜀, 𝑡). Then 

𝐺′ (𝑓𝑁(𝑥) − 𝑓(𝑥),
𝑡

2
) > 1 − 𝜀 , 𝐵′ (𝑓𝑁(𝑥) − 𝑓(𝑥),

𝑡

2
) < 𝜀 𝑎𝑛𝑑 𝑌′ (𝑓𝑛(𝑥) − 𝑓(𝑥),

𝑡

2
) < 𝜀   

We want to show that there exists a number 𝑁 = 𝑁(𝑥, 𝜀, 𝑡) such that 
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{

𝑛 ∈ ℕ: 𝐺′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≤ 1 − 𝑠

𝑜𝑟 𝐵′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥ 𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋

𝑜𝑟 𝑌′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥ 𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋
} ∈ 𝐼 

 

For this, define for each 𝑥 ∈  𝑋 

𝐵𝑥(𝜀, 𝑡) = {

𝑛 ∈ ℕ: 𝐺′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≤ 1 − 𝑠

𝑜𝑟 𝐵′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥ 𝑠 

𝑜𝑟 𝑌′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥ 𝑠

} 

We have to show that 

𝐵𝑥(𝜀, 𝑡) ⊂ 𝐴𝑥(𝜀, 𝑡) 
Suppose that 

𝐵𝑥(𝜀, 𝑡) ⊈ 𝐴𝑥(𝜀, 𝑡) 
In this case 𝐵𝑥(𝜀, 𝑡) has at least one different element which 𝐴𝑥(𝜀, 𝑡)doesn’t has. Let 𝑛 ∈
 𝐵𝑥  (𝜀, 𝑡)\𝐴𝑥  (𝜀, 𝑡). Then we have 

 

𝐺′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≤  1 − 𝑠 

                                     and 𝐺′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) > 1 − 𝜀 

in particularly  𝐺′ (𝑓𝑁(𝑥) − 𝑓(𝑥),
𝑡

2
) ≥ 1 − 𝜀. In this case  

1 − 𝑠 ≥ 𝐺′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) 

     ≥ 𝐺′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) 𝑜 𝐺′ (𝑓𝑁(𝑥) − 𝑓(𝑥),

𝑡

2
) 

     ≥ (1 − 𝜀)𝑜(1 − 𝜀) > 1 − 𝑠 
 

which is not possible. On the other hand 

𝐵′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥  𝑠  
𝑎𝑛𝑑 𝐵′ (𝑓𝑛 (𝑥) − 𝑓 (𝑥), 𝑡/2)  <  𝜀, 

in particularly 𝐵′ (𝑓𝑁 (𝑥) − 𝑓 (𝑥), 𝑡/2) < 𝜀. In this case 

𝑠 ≤ 𝐵′ (𝑓𝑛 (𝑥) − 𝑓𝑁 (𝑥), 𝑡) 

≤  𝐵′ (𝑓𝑛 (𝑥) − 𝑓 (𝑥),
𝑡

2
 )●𝐵′ (𝑓𝑁 (𝑥) − 𝑓 (𝑥),

𝑡

2
) 

<  𝜀 ● 𝜀 <  𝑠 
Similarly 

  
𝑌′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥  𝑠  

𝑎𝑛𝑑 𝑌′ (𝑓𝑛 (𝑥) − 𝑓 (𝑥), 𝑡/2)  <  𝜀, 
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in particularly, 𝑌′(𝑓𝑁 (𝑥) − 𝑓 (𝑥), 𝑡/2) < 𝜀. In this case 

𝑠 ≤ 𝑌′ (𝑓𝑛 (𝑥) − 𝑓𝑁 (𝑥), 𝑡) 

≤  𝑌′ (𝑓𝑛 (𝑥) − 𝑓 (𝑥),
𝑡

2
 )●𝑌′ (𝑓𝑁 (𝑥) − 𝑓 (𝑥),

𝑡

2
) 

<  𝜀 ● 𝜀 <  𝑠 
which is not possible. Hence 𝐵𝑥(𝜀, 𝑡)  ⊂  𝐴𝑥  (𝜀, 𝑡). Therefore, since 𝐴𝑥  (𝜀, 𝑡) ∈ 𝐼, 𝐵𝑥  (𝜀, 𝑡) ∈
 𝐼, (𝑓𝑛) is a pointwise I - Cauchy sequence with respect to neutrosophic norm (𝐺, 𝐵, 𝑌) on X. 

In studying on sequences of functions, uniform convergence is another important concept. Now 

we introduce uniformly I - convergence of sequences of functions in a NNS. Let us start with the 

following definition. 

 

Definition 3.9. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. and 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●) be a sequence of functions. 

If for every 𝑥 ∈  𝑋 and ∀𝜀 >  0, 𝑡 >  0 

{

𝑛 ∈ ℕ: 𝐺′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≤ 1 − 𝜀

𝑜𝑟 𝐵′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) ≥ 𝜀 

𝑜𝑟 𝑌′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) ≥ 𝜀

} ∈ 𝐼 

then we say that the sequence (𝑓𝑛) is uniformly I - convergent with respect to neutrosophic norm 

(𝐺, 𝐵, 𝑌) and we denote 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 ⇶ 𝑓 . 

 

Corollary 3.10. Let I = {A ⊂ ℕ : A is a finite set}. Then I is an admissible ideal in ℕ. Hence, in 

the Definition 3.4. and the Definition 3.9., I - convergence coincides usual convergence of 

sequences of functions with respect to neutrosophic norm. 

 

Corollary 3.11. Let I = {A ⊂ ℕ : δ(A) = 0 }. Then I is an admissible ideal in ℕ. Hence, in the 

Definition 3.4. and the Definition 3.9., I - convergence coincides with statistical convergence of 

sequences of function with respect to neutrosophic norm. 

 

Remark 3.12. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and  𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●) be a sequence of functions. If 

(𝑓𝑛) is uniformly neutrosophic convergent on X to a function f with respect to (𝐺, 𝐵, 𝑌), then 

𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 ⇶ 𝑓 . But the converse of this is not true. 

 

Lemma 3.13. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺,  𝑁′ , 𝑜, ●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′,  𝐵′,  𝑌′) be respective NN. Let 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●)be a sequence of functions. 

Then for every 𝜀 >  0, for every 𝑥 ∈ 𝑋 and 𝑡 > 0, the following statements are equivalent:  
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(i) 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 ⇶ 𝑓 . 

(ii) {𝑛 ∈ ℕ ∶  𝐺′(𝑓𝑛(𝑥) −  𝑓(𝑥), 𝑡)  ≤  1 − 𝜀}  ∈  𝐼},  
{𝑛 ∈ ℕ ∶  𝐵′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) ≥ 𝜀}  ∈  𝐼} 𝑎𝑛𝑑 {𝑛 ∈ ℕ ∶  𝑌

′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡)
≥ 𝜀}  ∈ 𝐼} 

(iii) {𝑛 ∈ ℕ ∶  𝐺 ′(𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡} >  1 − 𝜀}, {𝐵
′(𝑓𝑛(𝑥) −  𝑓 (𝑥), 𝑡) < 𝜀} and { 𝑌

′(𝑓𝑛(𝑥) −

 𝑓 (𝑥), 𝑡) < 𝜀}  ∈ 𝐹(𝐼). 
(iv) {𝑛 ∈  ℕ ∶  𝐺 ′ (𝑓𝑛(𝑥) − 𝑓(𝑥), 𝑡) > 1 − 𝜀}  ∈ 𝐹 (𝐼) , {𝑛 ∈  ℕ ∶ {𝐵′(𝑓𝑛(𝑥) −

 𝑓 (𝑥), 𝑡) < 𝜀 } ∈ 𝐹 (𝐼) and {𝑛 ∈  ℕ ∶ 𝑌′(𝑓𝑛 (𝑥) −  𝑓 (𝑥), 𝑡) < 𝜀 } ∈ 𝐹 (𝐼)}. 
(v) 𝐼 − lim𝐺 ′(𝑓𝑛(𝑥) −  𝑓 (𝑥), 𝑡) =  1 , 𝐼 − lim𝐵

′(𝑓𝑛(𝑥) −  𝑓 (𝑥), 𝑡) =
 0 and 𝐼 − lim𝑌′(𝑓𝑛(𝑥) −  𝑓 (𝑥), 𝑡) =  0 

 
Definition 3.14. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●) be a sequence of functions. 

The sequence (𝑓𝑛) is a uniform I - Cauchy sequence in neutrosophic normed space provided that 

for every 𝜀 > 0 𝑎𝑛𝑑 𝑡 > 0 there exists a number 𝑁 = 𝑁(𝜀, 𝑡) such that 

{𝑛 ∈ ℕ ∶  𝐺′ (𝑓𝑛 (𝑥) − 𝑓𝑁 (𝑥), 𝑡)  ≤ 1 − 𝜀  
𝑜𝑟 𝐵′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥  𝜀 

𝑜𝑟  𝑌′(𝑓𝑛(𝑥) − 𝑓𝑁(𝑥), 𝑡) ≥  𝜀  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈  𝑋}  ∈  𝐼  
Theorem 3.15. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺, 𝑁′ , 𝑜,●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′,  𝐵′,  𝑌′) be respective NN. Let 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●) be a sequence of functions. 

If (𝑓𝑛) is a uniformly I - convergent sequence with respect to neutrosophic norm (𝐺, 𝐵, 𝑌), then 

𝑓𝑛 is uniformly I - convergent Cauchy sequence with respect to neutrosophic norm (𝐺′,  𝐵′, 𝑌′). 
Proof. The proof is similar to the Theorem 3.8. We omit it. 

 

Theorem 3.16. Let (𝐹, 𝑁, 𝑜,●) 𝑎𝑛𝑑 (𝐺,  𝑁′ , 𝑜, ●) be NNS and N = (G, B, Y) and 𝑁′ =
(𝐺′, 𝐵′, 𝑌′) be respective NN. Let 𝑓𝑛 ∶  (𝐹, 𝑁, 𝑜,●) →  (𝐺, 𝑁

′, 𝑜,●) be a neutrosophic continuous 

mapping on 𝑋. If (𝐺, 𝐵, 𝑌) − 𝑓𝑛  →  𝑓 , then 𝑓 ∶  𝑋 →  𝑌 is a neutrosophic continuous mapping 

on 𝑋. 

 

Proof. Let 𝑥0 ∈ 𝑋 be an arbitrary point. By the neutrosophic continuity of 𝑓𝑛’𝑠, there exist 𝛿 >
 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝐺′(𝑥 − 𝑥0, 𝑡) > 1 − 𝛿 ,  𝐵′(𝑥 − 𝑥0, 𝑡) < 𝛿 𝑎𝑛𝑑 𝑌

′(𝑥 − 𝑥0, 𝑡) < 𝛿 ⇒
𝐺′(𝑓𝑛(𝑥0) − 𝑓𝑛(𝑥), 𝑡) > 1 − 𝜀 , 𝐵

′(𝑓𝑛(𝑥0) − 𝑓𝑛(𝑥), 𝑡) < 𝜀 𝑎𝑛𝑑 𝑌
′(𝑓𝑛 (𝑥0) − 𝑓𝑛 (𝑥), 𝑡) < 𝜀 

for every 𝑛 ∈  ℕ and 𝑡 >  0. Let 𝑥 ∈ 𝐵(𝑥0, 𝛿, 𝑡) (open ball with center 𝑥0 and radius 𝛿 in 

neutrosophic normed space be fixed. Since 𝐼(𝐺,   𝐵,   𝑌) − 𝑓𝑛 → 𝑓 on X, the sets 
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A =

{
 
 

 
 𝑛 ∈ ℕ ∶ 𝐺′ (𝑓𝑛 − 𝑓(𝑥),

𝑡

2
) ≤ 1 − 𝜀

𝑜𝑟 𝐵′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) ≥ 𝜀

𝑜𝑟 𝑌′ (𝑓𝑛(𝑥) − 𝑓(𝑥),
𝑡

2
) ≥ 𝜀

}
 
 

 
 

∈ 𝐼 

and 

 

𝐴𝑥(𝜀, 𝑡)  =

{
 
 

 
 𝑛 ∈ ℕ ∶ 𝐺′ (𝑓𝑛(𝑥0) − 𝑓(𝑥),

𝑡

2
) ≤ 1 − 𝜀

𝑜𝑟 𝐵′ (𝑓𝑛(𝑥0) − 𝑓(𝑥0),
𝑡

2
) ≥ 𝜀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋

𝑜𝑟 𝑌′ (𝑓𝑛(𝑥0) − 𝑓(𝑥0),
𝑡

2
) ≥ 𝜀 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝑋

}
 
 

 
 

∈ 𝐼 

is in 𝐼 so 𝐴 ∪ 𝐵 ∈  𝐼 and 𝐴 ∪ 𝐵 is different from ℕ since I is non-trivial. Thus, there exists an 

𝑛0 ∈ ℕ such that 

𝐺′( 𝑓𝑛0 (𝑥) − 𝑓 (𝑥),
𝑡

3
) > 1 − 𝜀 

𝐵′ (𝑓𝑛0  (𝑥) −  𝑓 (𝑥),
𝑡

3
) < 𝜀 

𝑌′ (𝑓𝑛0  (𝑥) −  𝑓 (𝑥),
𝑡

3
) < 𝜀 

 

and 

𝐺′ ( 𝑓𝑛0  (𝑥) − 𝑓 (𝑥),
𝑡

3
)  >  1 − 𝜀 

𝐵′ (𝑓𝑛0  (𝑥) −  𝑓 (𝑥),
𝑡

3
) <  𝜀 

𝑌′ (𝑓𝑛0  (𝑥) −  𝑓 (𝑥),
𝑡

3
) <  𝜀 

 

Now, we will show that 𝑓 is neutrosophic continuous at 𝑥0. We have 

𝐺′(𝑓(𝑥) − 𝑓(𝑥0), 𝑡) =  𝐺
′(𝑓(𝑥) − 𝑓𝑛0(𝑥) + 𝑓𝑛0(𝑥) − 𝑓𝑛0(𝑥0) + 𝑓𝑛0(𝑥0) − 𝑓(𝑥0), 𝑡) 

                      ≥ 𝐺
′(𝑓 (𝑥)− 𝑓𝑛0(𝑥),

𝑡

3
)
𝑜G′  (𝑓𝑛0  (x) − 𝑓𝑛0  (𝑥0),

𝑡

3
 ) 𝑜G′  (𝑓𝑛0 (𝑥0) −  𝑓(𝑥0),

𝑡

3
 ) 

> (1 − 𝜀) 𝑜 (1 − 𝜀) 𝑜 (1 − 𝜀) 
=  1 − 𝜀 
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and 

𝐵′(𝑓(𝑥) − 𝑓(𝑥0), 𝑡) =  𝐵′(𝑓(𝑥) − (𝑥) + 𝑓𝑛0(𝑥) − 𝑓𝑛0(𝑥0) + 𝑓𝑛0(𝑥0) − 𝑓(𝑥0), 𝑡) 

 ≤  𝐵′ (𝑓 (𝑥) − 𝑓𝑛0(𝑥),
𝑡

3
)●𝐵′ (𝑓𝑛0  (x) − 𝑓𝑛0  (𝑥0),

𝑡

3
 ) ●𝐵′ (𝑓𝑛0 (x0) −  𝑓(𝑥0),

𝑡

3
 ) 

           < (1 − 𝜀) ● (1 − 𝜀) ● (1 − 𝜀) =  𝜀. 

Similarly,  𝑌′(𝑓(𝑥) − 𝑓(𝑥0), 𝑡) <  𝜀. 
Hence the proof is completed. 

 

4. Conclusion:   

In this article, we have introduced the notions of sequence of convergence, point wise 

convergence and uniform convergence of sequences of functions with the help of neutrosophic 

norm in neutrosophic normed spaces. We have investigated several basic properties and 

characterization theorems of these newly defined concepts in neutrosophic normed spaces. We 

have defined I -convergence, point wise and uniform I - convergence and I - Cauchy sequence of 

sequences of functions with the help of neutrosophic norm in neutrosophic normed spaces. We 

have studied their basic properties and the relationship among the concepts such as I - 

convergence, statistical convergence and the usual convergence of sequences of functions in 

neutrosophic normed spaces.  
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Abstract: This paper aims at developing a fuzzy control system for queuing control (especially 
in traffic system) based on customer priority. Here we propose one model in which the decision 
regarding which customer (vehicle) is to be served next is taken by calculating the priority 
measure of each customer (vehicle) on the basis of certain parameters. Here we have 
considered the rail traffic system as the field of study. It may also be helpful in various other 
traffic control problems but parameters may be different. 

Keywords: Fuzzy control, waiting time, holding cost, priority measure, etc. 
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1. Introduction: 

In today’s world, Queues are very common. We can find Queues at hospital outdoors, petrol 
pumps, ticket booking counters, airports, banks, machine service stations, communication 
channels, etc. Queues are formed when demand for a service is more than the service facility 
available. A proper and efficient management of queues are very much essential for minimizing 
customers’ waiting times as well as the service cost incurred by the service providers and this is 
the motivation that led to the growth of queuing theory.  

Queuing control deals with controlling the various parameters of a queuing system with the aim 
of minimizing the costs, reducing the waiting time as well as minimizing the customer’s 
inconvenience. Traditional queuing control techniques uses conventional stochastic methods. 
Though these methods are often successful, but they have some serious computational 
limitations – often queuing systems do not have mathematical descriptions, or such 
descriptions are very complicated. Fuzzy logic has appeared to be a powerful tool to overcome 
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such limitations. In Fuzzy control one do not need a mathematical model of the system under 
consideration, and it is suitable in cases of complex systems or ill-defined processes. Moreover, 
in some cases input values of various parameters of a system may have fuzziness, inaccuracy or 
incompleteness. Similarly, the control rules that derive output values may also be incomplete 
or inaccurate. In such cases, fuzzy logic allows decision making with estimated values under  
 
 
    1(Corresponding author) shouvik@tripurauniv.ac.in ,  2 halder_731@gmail.com 
 
incomplete information. Lots of work has been done till date in the field of fuzzy queuing 
control, but less concentration has been given to the priority or emergency of the customer. 
 In this paper we propose a model for fuzzy queuing control which will decide the order in which 
the customers present in a queue at a certain time should be served. The controller will first 
calculate the priority of each customer in the queue on the basis of certain parameters and the 
final order of service is made on the basis of this priority measure. Priority is a fuzzy concept 
and the determination of priority will depend on some parameters which are fuzzy. So, fuzzy 
control is the best way to deal with it. We also take queuing control in the railway network to 
illustrate the proposed controller. 

 
1. Mathematical Preliminaries:    

2.1. Fuzzy Set [1,2] 

Fuzzy logic was first proposed by Lotfi A. Zadeh of the University of California at 

Berkeley in a 1965 paper. He elaborated on his ideas in a 1973 paper that introduced the 

concept of "linguistic variables", which in this article equates to a variable defined as a 

fuzzy set. 

2.1.1. Definition: Let X be a set of elements x. A fuzzy set A is a collection of ordered pairs   (x, 

µ(x)) for xX. X is called the universe of discourse and µA(x): X→[0,1] is the membership function. 
The function µA(x) provides the degree of membership of x in A. When X is countable, the fuzzy 
set A is represented as 

                             A = µA(x1)/x1 + µA(x2)/x2 + ……..+ µA(xn)/xn 

http://en.wikipedia.org/wiki/Lotfi_A._Zadeh
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This is a common notation in the context of fuzzy sets. It simply states the elements xi of 

X and the corresponding membership grades. 

2.2. Fuzzy Control [2] 

      Fuzzy logic control system is an expert system that uses a collection of Fuzzy rules 

[Fuzzy Rule Base] that uses the membership functions to derive conclusions. The 

principal design parameters for a fuzzy logic controller are [Driankov D, Hellendoorn H, 

Reinfrank M (1996), An introduction to fuzzy control, Springer Verlag, Berlin 

Heidelberg Newyork] 

   1) Fuzzification Methods and meaning 
   2) Knowledge base 
       a) discretization/normalization of the universe of discourse 
       b) choice of inputs and outputs 
       c) choice of membership functions 
       d) derivation of fuzzy control rules 
       e) consistency, completeness of fuzzy control rules. 
  3) Inference Engine 
       a) definition of fuzzy implication 
         b) inference mechanism 
  4) Defuzzification method.  

3. Description of The Proposed Fuzzy Control System: 

In today’s world, queues are present everywhere. As a result, in order to provide quality service 
and make profit at the same time, proper and efficient control of queues is very important. At 
this point we would like to emphasize on the fact that while controlling queues, the objective 
should not only be to minimize the service and holding costs, but also to minimize the 
inconvenience of the customer, a concept which is totally fuzzy. To deal with this we propose a 
fuzzy queuing controller which will take into consideration all these parameters and determine 
the priority (a rough set concept) of each customer which will in turn give the order in which 
the customers currently present should be served.  

The parameters on the basis of which the priority of each customer is decided are process 
dependent. Expert opinion may be taken to decide the parameters for a particular process. 
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However, in our model two parameters, viz. waiting time and customer category are used in 
every process. In general, we divide customers into four categories -  Emergency, Very 
Important, Important and general. 

We decide to fix a particular waiting time, say Tmax, such that whenever a customer’s waiting 
time exceeds Tmax that customer should be the next to be served as and when the server is 
empty. Also, the category of the customer will play a vital role in deciding the priority. 

3.1. The proposed model: 

 In this model, we use the category of customers while constucting the rule base. We agree that 
if an ‘EMERGENCY’ category or a ‘VERY IMPORTANT’ category customer is waiting in the queue, 
then it should be given first priority. If both ‘EMERGENCY’ and ‘VERY IMPORTANT’ category 
customers are present, we first allow the ‘EMERGENCY’ customer and then the ‘VERY 
IMPORTANT’ customer is allowed. If more than one customer of each of the above category is 
present we decide to serve them on the basis of their waiting time (more the waiting time, 
higher the priority). 

 (3.1.1.) The step-wise working procedure of the proposed queuing control system is as below: 

Step 1: The system receives the necessary data from various sources. 

Step 2: Checks whether any ‘EMERGENCY’ category customer(s) is(are) present or not. If such 
customer(s) is(are) present, then decide the priority as mentioned above and go to Step 1. If 
not, then go to Step 3. 

Step 3:  Checks whether the current waiting time of any customer is greater than Tmax or not. If 
it is greater than Tmax then give him the first priority as and when the server is empty and go to 
Step 1. If it is not, then go to Step 4. 

Step 4: Checks whether any ‘VERY IMPORTANT’ category customer(s) is(are) present or not. If 
such customer(s) is(are) present, then decide the priority as mentioned above and go to Step 1. 
If not, then go to Step 5. 

Step 5: Determines the priority of the other customers waiting for service, then decides the 
order in which they should be served and go to Step 1. 
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 Step 1-4 is simple to execute and we are not going into details. We now explain the procedure 
of Step 5. 

3.1.2. FUZZIFICATION: 

  As we know, in this step the crisp input values are fuzzified using membership functions for 
different fuzzy sets corresponding to the input parameters. The membership functions will vary 
from process to process and expert opinion will be taken to construct the most appropriate 
membership function for a particular process. We also define the fuzzy sets corresponding to 
the output and assign certain weights to them. 

3.1.3. INFERENCE ENGINE: 

  The next step is the set up the fuzzy rule base, i.e. a set of IF-THEN rules applicable to the 
process. The fuzzy controller calculates the priority of a particular customer on the basis of this 
rule set. This rule set will be constructed by taking the opinion of an expert human operator. 
Taking the help of more than one expert finer tunings can be done on this rule base to get better 
results. In this model we will make different rule bases for different customer categories. We 
will see it when we take the example of rail traffic later. 

3.1.4. DEFUZZIFICATION: 

  In this step the fuzzy set output is converted to real crisp value. The method used in this model 
is ‘Centre of gravity’ [2]. 

Crisp output = 
degree)) p(Membershi(

set))fuzzy output ingleton degree)x(s p(Membershi(




 

 This crisp output will give the measure of priority of each customer. After calculating the 
priority measure for each customer in the queue, the one with the highest priority is selected 
to be served next. The entire procedure is repeated after a certain pre-assigned interval of time. 
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4. Application of the Proposed Controller in the Indian Railway Network: 

In the Indian rail network it is often seen that more than one train is waiting to enter a platform 
or to pass through a particular track at the same instant. In this case an experienced operator 
decides which train should be passed first on the basis of different parameters and executes 
the action. The entire process is done manually. Our aim is to automate the system using a fuzzy 
logic controller. Here, we use the two fuzzy controller models proposed above to take the 
decision regarding which train should be given green signal first. Various parameters are 
considered while taking the decision. 

The Decision Parameters: 

1) Waiting Time (WT): The time for which a particular train is waiting for the green signal. 

2) Late Status (LS): Whether the train is running on time or not, and if it is running late, 
then how much it is late. 

3) Distance Travelled(D): The distance covered by the train till now from its starting point. 

4) Train Category (C): All the trains are divided into different categories depending on their 
type. We divide them into three categories: 

        (a) Emergency: medical facilities train, emergency train for incidental help, etc 

        (b) Very Important (VI): Rajdhani, Shatabdi, Durrant, Palace on Wheels, etc. 

        (c ) Important (I): Other superfast trains. 

        (d) General (G): The remaining express, passenger, local trains and cargo trains. 

 4.1. Application of the proposed model:  

   We first execute the steps 1-4 mentioned in 3.1.1. and take care of the trains having waiting 
time greater than Tmax and the trains of EMERGENCY and VERY IMPORTANT category.   

 We now describe how to compute the priority measure of the trains belonging to IMPORTANT 
and GENERAL categories. 
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4.1.1. FUZZIFICATION: 

The fuzzy sets corresponding to WT(waiting time), D(distance travelled) and C(customer 
category) ,LS(late status) are 

WT LS D C 

Small (S) 
Medium (M) 
Long (L) 

On Time (OT) 
Late (LT) 
Very Late (VL) 

Small (S) 
Medium (M) 
Long (L) 

Emergency(E) 
Very Important(VI) 
Important (I) 
General (G) 

                                                      Table 1 
The corresponding output parameter is the degree of priority. The fuzzy sets corresponding 

to the output are Very High(1), High(0.75), Medium(0.5), Low(0.25), Very Low(0). The number 
in the bracket represents the weights corresponding to each output. 

 The crisp input values are fuzzified using membership functions for different fuzzy sets 
corresponding to the input parameters. The membership functions for different fuzzy sets are 
given below: 

For Waiting time(WT): 

ΜS(x) =   0                  , x < 0         ,    ΜM(x) =     0                   , x < 5           ,     ΜL(x) =      0                   , x < 15  
                1                  , 0 ≤ x ≤ 5                       (x-5)/(10-5)    , 5 ≤ x < 10                           (x-15)/(20-15), 15 ≤ x ≤ 20 
              (10-x)/(10-5), 5 < x ≤ 10                        1                   , 10 ≤ x ≤ 15                           1                   ,  x > 20    
               0                  , x > 10                            (20-x)/(20-15), 15 < x ≤ 20 
                                                                             0                   , x > 20 

 
 
For Late status(LS): 
ΜOT(x) =  0                   , x < 0         ,    ΜLT(x) =    0                    , x < 10           ,     ΜVL(x) =   0                 , x < 40  
                 1                   , 0 ≤ x ≤ 10                       (x-10)/(20-10) , 10 ≤ x < 20                      (x-40)/(60-40), 40 ≤ x ≤ 60 
               (20-x)/(20-10), 10 < x ≤ 20                       1                    , 20 ≤ x ≤ 40                        1                   ,  x > 60    
                 0                   , x > 20                              (60-x)/(60-40), 40 < x ≤ 60 
                                                                                 0                    , x > 60 

For Distance traveled(D):  

ΜS(x) =    0                         , x < 0                ,             ΜM(x) =    0                        ,  x < 100            
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                 1                         , 0 ≤ x ≤ 100                                   (x-100)/(200-100), 100 ≤ x < 200                       
               (200-x)/(200-100), 100 < x ≤ 200                                  1                        , 200 ≤ x ≤ 300                         
                 0                         , x > 200                                         (400-x)/(400-300), 300 < x ≤ 400 
                                                                                                      0                        , x > 400 
ΜL(x) =      0                        , x < 300 
                (x-300)/(400-300), 300 ≤ x ≤ 400 
               1                       ,  x > 400   

 
 
The graph of these membership functions are shown below: 
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                                               Figure 2: Fuzzy sets for WT 
 
 
 
 
                 
         1 
 
 
                   ON TIME                       LATE                                                        VERY LATE    
 
                   
               0         10                 20                                   40                         60 
                                                         Late time (in minutes) 
                                                        Figure 3: Fuzzy sets for LS 
 
4.1.2. INFERENCE ENGINE: 
The rule base for this rail traffic problem under the first model is given below. Here different 
rule bases are constructed for different categories. As for example, the first rule states that   
“IF Train Status (TS) is IMPORTANT AND LS is  OT AND D is Small (S) AND Waiting Time(WT) is 
Small(S), THEN ‘Priority’ is Very High (VH).” 
 
 

IF C is IMPORTANT  AND  IF C is GENERAL  AND 

IF THEN IF THEN 

LS AND D AND WT Priority LS AND D AND WT Priority 

OT AND S AND S VH OT AND S AND S VH 

OT AND S AND M VH OT AND S AND M VH 

OT AND S AND L VH OT AND S AND L VH 

OT AND M AND S VH OT AND M AND S VH 

OT AND M AND M VH OT AND M AND M VH 

OT AND M AND L VH OT AND M AND L VH 

OT AND L AND S VH OT AND L AND S VH 

OT AND L AND M VH OT AND L AND M VH 

OT AND L AND L VH OT AND L AND L VH 

LT AND S AND S L LT AND S AND S VL 
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LT AND S AND M M LT AND S AND M VL 

LT AND S AND L H LT AND S AND L L 

LT AND M AND S L LT AND M AND S VL 

LT AND M AND M M LT AND M AND M L 

 
                                                             
 

LT AND M AND L H  LT AND M AND L M 

LT AND L AND S M LT AND L AND S L 

LT AND L AND M H LT AND L AND M M 

LT AND L AND L VH LT AND L AND L M 

VL AND S AND S VL VL AND S AND S VL 

VL AND S AND M L VL AND S AND M VL 

VL AND S AND L M VL AND S AND L M 

VL AND M AND S M VL AND M AND S L 

VL AND M AND M H VL AND M AND M M 

VL AND M AND L VH VL AND M AND L H 

VL AND L AND S H VL AND L AND S H 

VL AND L AND M VH VL AND L AND M VH 

VL AND L AND L VH VL AND L AND L VH 

                                                             Table 2 
 
4.1.3. DEFUZZIFICATION: 
 
  Now, the priority measure is computed as described in 3.1.4. After calculating the priority for 
all the trains waiting in the queue, the train with the maximum priority is selected to get the 
green light. 
 
 
Example 1: 

Let we have 3 trains waiting in a queue to get access to a particular platform. The following 
information is available: 
Train 1: Rajdhani Express, D = 570 km, WT = 8 min, LS = 5 min. 
Train 2: Gitanjali (super fast) Express, D = 270 km, WT = 18 min, LS = 15 min. 
Train 3: Lalgola Passenger, D = 325 km, WT = 21 min, LS = 45 min. 
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From the graphs of the membership functions for the fuzzy sets corresponding to D, WT and LS, 
we can easily compute the following: 
 
For Train 1: 
      Category is VERY IMPORTANT,  
      D is L with membership grade 1,  
      WT is S with membership grade 0.4 and M with membership grade 0.6, 
      LS is OT with membership grade 1. 
  For Train 2: 
      Category is IMPORTANT,  
      D is M with membership grade 1,  
      WT is M with membership grade 0.4 and L with membership grade 0.6, 
      LS is LT with membership grade 0.5 and OT with membership grade 0.5. 
   
For Train 3: 
      Category is GENERAL,  
      D is M with membership grade 0.75 and L with membership grade 0.25,  
      WT is L with membership grade 1, 
      LS is LT with membership grade 0.75 and VL with membership grade 0.25. 
Obviously, Train 1 is a VERY IMPORTANT category train and should get access to the platform 
before Train 2 and 3. We now compute the priority of the other trains. 
Now we execute the applicable rules from the rule base in 4.1.2.(Table 2) to find the priority of 
Train 2 and Train 3. 
  For Train 2: 
      From the rule base we find that the following four rules are applicable. 
       If C is IMPORTANT and D is M with 1, WT is M with 0.4 and LS is LT with 0.5, then priority is 
M with membership grade = min{1, 0.4, 0.5} = 0.4.  
       If C is IMPORTANT and D is M with 1, WT is M with 0.4 and LS is OT with 0.5, then priority is 
VH with membership grade = min{1, 0.4, 0.5} = 0.4.  
       If C is IMPORTANT and D is M with 1, WT is L with 0.6 and LS is LT with 0.5, then priority is 
H with membership grade = min{1, 0.6, 0.5} = 0.5.  
       If C is IMPORTANT and D is M with 1, WT is L with 0.6 and LS is OT with 0.5, then priority is 
VH with membership grade = min{1, 0.6, 0.5} = 0.5.   
 
Therefore,  
 Priority = {(0.4x0.5) + (0.4 x1) + (0.5x0.75) + (0.5x1)}/(0.4 + 0.4 + 0.5 + 0.5)    = 0.82 
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For Train 3: 
       If C is GENERAL and D is M with 0.75, WT is L with 1 and LS is LT with 0.75, then priority is 
M with membership grade = min{0.75, 1, 0.75} = 0.75.  
       If C is GENERAL and D is M with 0.75, WT is L with 1 and LS is VL with 0.25, then priority is H 
with membership grade = min{0.75, 1, 0.25} = 0.25.  
       If C is GENERAL and D is L with 0.25, WT is L with 1 and LS is LT with 0.75, then priority is M 
with membership grade = min{0.25, 1, 0.75} = 0.25.  
       If C is GENERAL and D is L with 0.25, WT is L with 1 and LS is VL with 0.25, then priority is VH 
with membership grade = min{0.25, 1, 0.25} = 0.25.   
 
 
Therefore,  
Priority =   {(0.75x0.5) + (0.25 x0.75) + (0.25x0.5) + (0.25x1)}/(0.75 + 0.25 + 0.25 + 0.25) 
             = 0.63 
Hence, we can see that Train 2 has higher priority than Train 3 and hence Train 2 should get the 
access to the platform before Train 3. So, Train 1 will get access to the platform first, followed 
by Train 2 and Train 3 respectively. 

CONCLUSION: 

 In this paper we have proposed a fuzzy logic controller for queuing control based on priority 
and keeping the objective of minimizing the customer inconvenience in mind, in addition to the 
aim of minimizing the costs. We have kept the category of each customer in mind while making 
the rule base and hence get different rule bases for different categories.  
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Abstract 

 

Forestry is an important natural resource. Various industries depend on forestry biomass. Though 

renewable, forestry management for sustainable socio-economic development is a challenging 

issue in the modern world. The major concern with the consumption of forestry biomass is that 

it takes quite a long time to grow back to the economically profitable level. Uncontrolled 

exploitation of forestry biomass will not only create high environmental pollutions it may also 

create irreversible natural hazards such as climate change, global warming etc. Therefore, for 

sustainable development we have to find an optimal strategy for forestry management so that the 

forestry dependent industries can survive without overexploiting and depleting the forestry 

biomass. In this purpose we have considered a deterministic mathematical model involving pre-

mature trees (not suitable for industries and restricted for industrial usage), mature trees (suitable 

for industrial usage and can be cut for industrial usage) and industrialization as the state variables. 

The harvesting of the trees is considered to be age – structured, as only mature trees can be cut. 

We have considered modified Leslie-Gower type industrial growth to incorporate the alternatives 

that industries may use when there is a shortage or low growth of mature trees. We have used 

Pontryajin’s Maximum Principle to determine sustainable harvesting strategy of the forestry 

biomass so that forestry related industries can grow without depleting the forestry biomass. 

Numerical verification of analytical results has also been studied and mathematical results have 

been interpreted bionomically.  

Keywords: Deterministic mathematical model, modified Leslie–Gower function, stability 

analysis, optimal control, sensitivity analysis, data fitting. 
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1 Introduction 

 In today’s world natural resources are highly essential for the all-round 

development of any human civilization. Coal and Fossil Fuel are two of the most important 

natural resources. They are inseparable parts of socio – economic developments in any human 

society. However, these resources are not renewable and due to unplanned & uncontrolled 

exploitation in near future coal and fossil fuel reserve will be exhausted all over the world. 

Therefore, in coming times renewable natural resources such as water, wind, biofuel and forestry 

etc. will play pivotal roles in the development of human civilization. Apart from water and wind, 

forestry is an important natural resource. Forestry biomass helps us to mitigate the issue of 

climate change, ensures adequate supply of fresh water by regulating rainfall, enhances 

biodiversity, provides sustainable income and livelihood to the people, preserves food security, 

generates vital air to breath, stops soil erosion etc. United Nations declared the year 2011 as the 

year of ‘‘Forests’’ to generate awareness against depletion of forestry biomass and to strengthen 

the conservation, adequate management and sustainable development of all types of forests for 

the benefit of not only of the present generations but also for the future (http:// www.un.org/ en/ 

events/iyof2011/). 

 Forestry biomass-based industries are one of the major aspects of the forest 

associated economy. Various industries such as fruit, juice, honey, rubber, tea and coffee etc. are 

completely dependent on forestry biomass. But in this type of agriculture associated industries 

forestry biomass is not affected directly as we do not have to cut the trees completely for these 

types of industries. However, there are other important industries where felling of the forestry 

biomass is a must. For example, industries related to formation of sandal wood, timber & 

roundwood for construction & furniture, production of paper, plywood & other allied industries 

etc. For the growth of these industries the forestry biomass needed to be cut and that may cause 

a havoc environmental hazard unless managed properly. Therefore, it is a challenging issue to 

determine an effective policy so that those important industries that cause loss of forestry 

biomass, can be sustained and the environmental balance is not hampered too. 

 

 

 

http://www.un.org/
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1.1 Present situation of forestry biomass in India 

 India State of Forest Report 2021 [1] states that the total forest cover of the country 

is at present 713789 𝑘𝑚2 that is 21.71% of the total geographical area of India. The current 

assessment indicates that the forest cover has increased 1540 𝑘𝑚2 (0.22%), the tree cover has 

increased 721 𝑘𝑚2 (0.76%) and total forestry biomass has increased 2261 𝑘𝑚2 (0.28%) from 

the statistics reported in India State of Forest Report 2019 [2]. Moreover, according to [1] the 

total forest cover in the Northeast region is 169521 𝑘𝑚2, which shows a decrease of 1020 𝑘𝑚2 

(0.6%) forest area from 2019. The total growing stock of wood in the country is estimated to be 

6167.5 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 comprising 4388.15 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 inside forest area and 1779.35 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 

outside the recorded forestry biomass. 

 There is no doubt 

that the India’s forest and tree cover are experiencing a steady growth in the last two decades. 

However, there is a standing deficit between timber production and its demand for industrial use 

in India & export in other foreign countries. Therefore, India imports large quantities of timber, 

especially roundwood, for industrial use. This trend began in the 1980s when roundwood 

production was in the range of 10 to 15 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 per year. The main reason of this gradual 

decline in production has been due to increased monitoring for conservation of forests after the 

notification of the National Forest Policy, 1988. According to the Statistical Yearbook 2021 of 

the Food and Agricultural Organization (FAO) of United Nations [3] the Compounded Annual 

Growth Rate (CAGR) in India declined every year during the decade 1991 to 2000. For industrial 

coniferous roundwood it was 0.7%. Whereas, for industrial non-coniferous roundwood the 

decline was 1.15%, for coniferous sawn – wood 8.72%, 8.39% for non-coniferous sawn – wood 

and 5.09% for veneer. With the stringent restrictions placed by the Supreme Court of India on 

harvesting from forests, initially in the North-eastern states and later to other states of India, the 

trend of decline became sharper in the following decades.  

 

1.2 Present situation of forestry biomass-based industries in India 

The demand for wood products is always high despite the available alternatives such as 

iron, steel, plastic and aluminium, etc and the price is quite high. This trend may be observed due 

to the high social acceptability of wood in every compartment of Indian society and the 

availability of forestry biomass. The timber industry in India is substantially significant and it 
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serves a wide variety of end – uses that include construction, paper, plywood and panels, 

furniture, agricultural implements, handicrafts, and toys. The “Make in India” initiative of 

Government of India is also expanding the demand for wood from forestry biomass. The Indian 

timber market is quite dependent on the harvesting of timber from the following four main 

sources, namely, (a) the state forest departments, (a) forest development corporations, (c) 

privately owned forests known as Trees Outside Forests (TOF), and (d) imports. Trees outside 

Forests are either created by industries on their own land, or on farmers’ land under buy-back 

arrangements, or agro-forestry practices in farmers’ fields. The Indian economy depends highly 

on the wood-based or forestry biomass-based industries. It significantly contributes to rural 

economy and provides employment for the urban population, both permanent as well as seasonal.  
 

 Therefore, it will be interesting to determine an optimal harvesting policy of the 

forestry biomass so that forestry biomass related industries can be sustained without hampering 

the ecological balance, not only in India but with respect to the world too. 
 

2 Model formulation 

Extensive researches have been performed by the various researchers to mitigate the 

issue of sustainable socio – economic development of the human society conserving the 

environmental balance. The effects of deforestation on climate change and the impact of climate 

change on forestry biomass have been studied by [4]. In their study they have shown that the 

annual rate of deforestation is 0.14 % and as a result the world has lost 2.3 million square 

kilometres of forest cover has been lost between 2000 and 2012. Shukla et al. [5] proposed and 

analysed a mathematical model for regeneration of forestry resource and provided some realistic 

conservation mechanisms. The study of Agarwal et al. [6] and Chaudhary et al. [7] have shown 

that forestry resources deplete alarmingly due to the pressure of industrialization. The later study 

also has determined the effort required for optimal harvesting of forestry biomass. The studies of 

Mirsa et al. [8] and Lata et al. [9] deals with the effect of population pressure on forestry biomass. 

They have shown that the population pressure has significant influence on the existing forestry 

biomass and can result in depletion of forestry biomass.  Another mathematical model has been 

proposed and analysed by Misra et al. [10] to observe the effect of technological effort on the 

conservation of forestry biomass.  Dhar [11] studied a mathematical model that considers a two-

patch habitat for forestry biomass resources.  
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2.1 Basic assumptions 

 We construct a 

deterministic mathematical model with the help of nonlinear differential equations with the 

following assumptions: 

A1. Forestry biomass or basically commercially usable trees in biomass – based industries are 

divided into two groups, namely, premature trees, whose population density at any time 𝑡 is 

denoted by the state variable 𝑃(𝑡) and the mature tress with population density at any time 𝑡 

given by 𝑀(𝑡). Therefore, we consider an age – structured model. The density of forestry biomass 

– based industries at any given time 𝑡 is represented by the state variable 𝐼(𝑡). 

 

A2. Premature trees grow logistically with an intrinsic growth rate 𝑟 up to environment’s 

carrying capacity 𝑘 towards the premature trees.  

 

A3. The interaction between the forestry biomass and forestry biomass – based 

industrialization is equivalent to the prey – predator type interactions as the later one feed off the 

former for survival. But the forestry – biomass can grow independently similar to a prey. 

 

A4. The premature trees become mature at a rate 𝛼 and move to the mature class. The new 

plantation rate of trees is denoted by the parameter 𝜆. It should be noted that the new plantation 

depends on the existing number of premature trees. 

 

A5. For industrial purpose only the mature trees are harvested with harvesting rate 𝑞 and 

harvesting effort 𝐸. It is restricted to harvest the premature trees. We assume that the harvesting 

is density dependent, i.e., harvesting depends on the existing density of the mature trees. 

Moreover, it will tend to a constant value for large 𝑡. The parameter 𝑎 is the half saturation 

constant. 

 

A6. The rate of natural depletion of mature trees due to natural calamities is represented by the 

parameter 𝜇1. 
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A7. It is assumed that the growth of the biomass – based industries follow the modified Leslie 

– Gower function that was introduced by Leslie [12,13]. In context of the prey – predator 

interactions the construction of Leslie – Gower function is based on the assumption that reduction 

in the density of the predator population has a reciprocal effect on the per capita availability of 

its preferred prey. But according to the modified Leslie Gower functional response, if the 

preferred prey of the predator facing severe scarcity, then the predator can opt for other available 

alternative preys. However, it will have an adverse effect on the growth of predator, as it is unable 

to consume its favoured prey [12,13,14,15]. We consider modified Leslie – Gower function to 

represent the growth of the biomass – based industries depending on forestry biomass with  𝛽 be 

the maximum reduction rate of that industries can attain sustainably, the parameter 𝛾 represent 

the maximum value for the reduced rate of industrialization, 𝜃−1 is the average rate of 

governmental protection towards the sustainable conservation of forestry – biomass. The 

objective is to incorporate the fact that biomass – based industries can survive for a time period, 

depending on some alternative resources or governmental support, when their primary forestry 

biomass resource is absent due to some governmental conservation policies or some natural 

calamities. This assumption very important for sustainability of the forestry biomass – based 

industrialization. 

 

A8. The forestry biomass – based industries are shut down or decrease in absence of forestry 

– resource at a rate 𝜇2. 

 

A9. All the parameters are positive. 

The schema diagram based on the above assumptions depicting the interactions between the state 

variables is given in Fig. 1. 
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Figure 1. Schema diagram of the interactions between the state variables according to the 

assumptions stated in A1 – A9. 

In view of the assumptions A1 – A9 and the schema diagram given in Fig. 1 we formulate the 

following model system (1): 

 

𝑑𝑃

𝑑𝑡
= 𝑟𝑃 (1 −

𝑃

𝜅
) − 𝛼𝑃 + 𝜆𝑃, 

𝑑𝑀

𝑑𝑡
= 𝛼𝑃 −

𝑞𝐸𝑀

𝑎 +𝑀
− 𝜇1𝑀,                                                                                                    (1) 

𝑑𝐼

𝑑𝑡
= (𝛽 −

𝛾𝐼

𝜃 +𝑀
) 𝐼 − 𝜇2𝐼. 

 

Initial Condition:𝑃(0) > 0,𝑀(0) > 0, 𝐼(0) > 0.                                                       (2)  
 

 

3 Analytical results 

In this section we derive various conditions such as positivity, boundedness of the solutions and 

permanence of the system (1).  
 

3.1 Positivity and boundedness of the solutions 
 

Proposition 3.1 All the solutions of the model system (1) are positively invariant and ultimately 

bounded in the region Γ for sufficiently large 𝑡 where Γ is given by: 

𝛤 = {(𝑃,𝑀, 𝐼) ∈ ℝ+
3 ∶  0 < 𝑃(𝑡) ≤

𝜅(𝑟 + 𝜆)

𝑟
, 0 <  𝑀(𝑡) ≤

𝛼𝜅(𝑟 + 𝜆)

𝑟𝜇1
, ) < 𝐼(𝑡)

≤
𝛽[𝜃𝑟𝜇1 + 𝛼𝜅(𝑟 + 𝜆)]

𝛾𝑟𝜇1
 }. 

Proof. First, we show that all the solutions of the system (1) starting with initial conditions (2) 

are positive, using a lemma proposed by Nagumo [16]. 
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Lemma 3.1 Consider a system 𝑋̇ = 𝐹(𝑋) where 𝐹(𝑋) = [𝐹1(𝑋), 𝐹2(𝑋), … , 𝐹𝑛(𝑋)], 𝑋 ∈

ℝ𝑛 with initial condition 𝑋(0) = 𝑋0 ∈ ℝ
𝑛. If for 𝑋𝑖 = 0, 𝑖 = 1,2, … , 𝑛 we get 𝐹𝑖(𝑋)|𝑋𝑖=0 ≥

0, then any solution of 𝑋̇ = 𝐹(𝑋) with given initial condition, say, 𝑋(𝑡) = 𝑋(𝑡; 𝑋0) will be 

positive i.e., 𝑋(𝑡) ∈ ℝ+
𝑛 . 

From model system (1), one can easily see that 
𝑑𝑃

𝑑𝑡
= 0,

𝑑𝑀

𝑑𝑡
= 0,

𝑑𝐼

𝑑𝑡
= 0 when 𝑃 = 𝑀 = 𝐼 = 0. 

Hence following Lemma 3.1 we conclude that all solutions of model system (1) is positively 

invariant in ℝ+
3 . 

Again, to establish the boundedness of the solutions of (1) first we state the following lemma 

proposed by Chen [17]: 

 

Lemma 3.2 If 𝑎, 𝑏 > 0 and 
𝑑𝑋

𝑑𝑡
≤ (𝑜𝑟 ≥)𝑋(𝑡)(𝑎 − 𝑏𝑋(𝑡)) with 𝑋(0) > 0, then 𝑙𝑖𝑚𝑠𝑢𝑝

𝑡→∞
𝑋(𝑡) ≤

𝑎

𝑏
 (𝑜𝑟 𝑙𝑖𝑚𝑖𝑛𝑓

𝑡→∞
𝑋(𝑡) ≥

𝑎

𝑏
) . 

 

From the first equation of (1) following Lemma 3.2 and (2) we obtain 

             
𝑑𝑃

𝑑𝑡
≤ 𝑟𝑃 (1 −

𝑃

𝜅
) + 𝜆𝑃 = 𝑃 ([𝑟 + 𝜆] − [

𝑟

𝜅
]𝑃)

⇒ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→∞

𝑃(𝑡) ≤
𝜅(𝑟 + 𝜆)

𝑟
.                                                       (3) 

Again, using (3) the second equation of (1) yields 

                                   
𝑑𝑀

𝑑𝑡
≤
𝛼𝜅(𝑟 + 𝜆)

𝑟
− 𝜇1𝑀

⇒ 𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→∞

𝑀(𝑡) ≤
𝛼𝜅(𝑟 + 𝜆)

𝑟𝜇1
.                                                       (4) 

Finally, from the third equation of (1) and applying (4) we get, 

𝑑𝐼

𝑑𝑡
≤ (𝛽 −

𝛾𝐼

𝜃 +𝑀
) 𝐼 ≤ (𝛽 − [

𝛾𝑟𝜇1
𝜃𝑟𝜇1 + 𝛼𝜅(𝑟 + 𝜆)

] 𝐼) 𝐼. 

Further using Lemma 3.2 and (2) we calculate, 

                                                       𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→∞

𝐼(𝑡) ≤
𝛽[𝜃𝑟𝜇1 + 𝛼𝜅(𝑟 + 𝜆)]

𝛾𝑟𝜇1
.                             (5) 

Hence the proposition is proved. 
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3.2 Permanence of the system 

 According the 

definition of permanence prescribed by Pal et. al. [18] the model system (1) along with the initial 

conditions given in (2) will be permanent if there exist positive constants 𝐾1 and 𝐾2 satisfying 

0 < 𝐾1 < 𝐾2 such that each positive solution (𝑃(𝑡, 𝑃0, 𝑀0, 𝐼0), 𝑀(𝑡, 𝑃0,𝑀0, 𝐼0), 𝐼(𝑡, 𝑃0,𝑀0, 𝐼0)) 

of (1) where (𝑃0,𝑀0, 𝐼0) conforms the initial condition stated in (2), satisfies 

                𝑚𝑖𝑛 {liminf
𝑡→∞

𝑃(𝑡, 𝑃0, 𝑀0, 𝐼0), liminf
𝑡→∞

𝑀(𝑡, 𝑃0,𝑀0, 𝐼0), liminf
𝑡→∞

𝐼(𝑡, 𝑃0, 𝑀0, 𝐼0)  }

≥ 𝐾1                                                                                                                           (6) 

and  

                    𝑚𝑎𝑥 {limsup
𝑡→∞

𝑃(𝑡, 𝑃0, 𝑀0, 𝐼0), limsup
𝑡→∞

𝑀(𝑡, 𝑃0,𝑀0, 𝐼0), limsup
𝑡→∞

𝐼(𝑡, 𝑃0,𝑀0, 𝐼0)  }

≤ 𝐾2.                                                                                                                         (7) 
 

Proposition 3.2 The model system (1) with the initial conditions (2) is permanent if all the 

solutions originate within the interior of the region 𝛤 as specified in Proposition 3.1 and 𝑟 >

𝛼, 𝐸 <
𝛼𝜅(𝑟−𝛼)

𝑟𝑞
 and 𝛽 > 𝜇2. 

Proof. For any solution of (1) originating within Γ we obtain: 

 

𝑙𝑖𝑚𝑠𝑢𝑝
𝑡→∞

𝑃(𝑡) ≤
𝜅(𝑟 + 𝜆)

𝑟
, 𝑙𝑖𝑚𝑠𝑢𝑝

𝑡→∞
𝑀(𝑡) ≤

𝛼𝜅(𝑟 + 𝜆)

𝑟𝜇1
,   𝑙𝑖𝑚𝑠𝑢𝑝

𝑡→∞
𝐼(𝑡) ≤

𝛽[𝜃𝑟𝜇1 + 𝛼𝜅(𝑟 + 𝜆)]

𝛾𝑟𝜇1
. 

 

Define, 𝐾2 = 𝑚𝑎𝑥 {
𝜅(𝑟+𝜆)

𝑟
,
𝛼𝜅(𝑟+𝜆)

𝑟𝜇1
,
𝛽[𝜃𝑟𝜇1+𝛼𝜅(𝑟+𝜆)]

𝛾𝑟𝜇1
 }. Then  

0 < 𝑚𝑎𝑥 {limsup
𝑡→∞

𝑃(𝑡), limsup
𝑡→∞

𝑀(𝑡), limsup
𝑡→∞

𝐼(𝑡)  } ≤ 𝐾2.       

Hence the condition of permanence as given in (7) is satisfied for the solutions of (1) within Γ 

with respect to any initial condition satisfying (2). Now, applying Lemma 3.1 on the first equation 

of (1) one can calculate that 

 

𝑑𝑃

𝑑𝑡
≥ 𝑟𝑃 (1 −

𝑃

𝜅
) − 𝛼𝑃 = 𝑃 ([𝑟 − 𝛼] −

𝑟

𝜅
𝑃) ⇒ liminf

𝑡→∞
𝑃(𝑡) ≥

𝜅(𝑟 − 𝛼)

𝑟
= 𝑃𝑖𝑛𝑓 .                 (8) 
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Applying (8) in the second equation of (1) can be expressed as: 

 

𝑑𝑀

𝑑𝑡
= 𝛼𝑃 −

𝑞𝐸𝑀

𝑎 +𝑀
− 𝜇1𝑀 ≥

𝛼𝜅(𝑟 − 𝛼)

𝑟
− 𝑞𝐸 − 𝜇1𝑀 

⇒ liminf
𝑡→∞

𝑀(𝑡) ≥
𝛼𝜅(𝑟 − 𝛼) − 𝑟𝑞𝐸

𝑟𝜇1
= 𝑀𝑖𝑛𝑓 .                                                                         (9) 

 

Next, we use (9) in the third equation of (1) and hence applying Lemma 3.2 we get: 
 

𝑑𝐼

𝑑𝑡
= (𝛽 −

𝛾𝐼

𝜃 +𝑀
) 𝐼 − 𝜇2𝐼 ≥ [(𝛽 − 𝜇2) −

𝑟𝜇1𝛾

𝑟𝜇1𝜃 + 𝛼𝜅(𝑟 − 𝛼) − 𝑟𝑞𝐸
𝐼] 

⇒ liminf
𝑡→∞

𝐼(𝑡) ≥
(𝛽 − 𝜇2)[𝑟𝜇1𝜃 + 𝛼𝜅(𝑟 − 𝛼) − 𝑟𝑞𝐸]

𝑟𝜇1𝛾
= 𝐼𝑖𝑛𝑓 .                                            (10) 

Clearly from (8), (9) and (10) we get, if 𝑟 > 𝛼, 𝐸 <
𝛼𝜅(𝑟−𝛼)

𝑟𝑞
 and 𝛽 > 𝜇2 then 𝑃𝑖𝑛𝑓 , 𝑀𝑖𝑛𝑓 , 𝐼𝑖𝑛𝑓 are 

positive. We define 𝐾1 = 𝑚𝑖𝑛{𝑃𝑖𝑛𝑓,𝑀𝑖𝑛𝑓 , 𝐼𝑖𝑛𝑓} > 0 and then 𝐾1 < 𝐾2 with 

𝑚𝑖𝑛 {liminf
𝑡→∞

𝑃(𝑡), liminf
𝑡→∞

𝑀(𝑡), liminf
𝑡→∞

𝐼(𝑡)  } ≥ 𝐾1.    

Eventually the condition of permanence as given in (6) is satisfied for the solutions of (1) within 

Γ with respect to any initial condition satisfying (2). Hence the proposition is proved. 

 

3.3 Equilibrium points and their existence conditions 

Model system (1) has four equilibrium points. 

(A) The trivial equilibrium point 𝐸0(0,0,0) that always exists. 

(B) The industry – free equilibrium 𝐸1(𝑃̅, 𝑀̅, 0) where 𝑃̅ =
𝜅

𝑟
[(𝑟 + 𝜆) − 𝛼] and 𝑀̅ is given by 

the positive root of the quadratic equation 𝐴1𝑀̅
2 + 𝐴2𝑀̅ + 𝐴3 = 0 where 𝐴1 = 𝜇1 > 0,𝐴2 =

𝑎𝜇1 + 𝑞𝐸 − 𝛼𝑃̅, 𝐴3 = −𝛼𝑎𝑃̅ < 0. Clearly this quadratic equation will have exactly one positive 

root 𝑀̅ =
−𝐴2+√𝐴2

2−4𝐴1𝐴3

2𝐴1
 provided 𝐴2

2 − 4𝐴1𝐴3 > 0.  

Therefore, the equilibrium 𝐸1 will exist if  (𝑖) 𝜆 > 𝜆∗ and (𝑖𝑖) Δ1(𝜆) > 0                            (11) 

  where 𝜆∗ = 𝛼 − 𝑟,  Δ1(𝜆) = 𝐴2
2 > 4𝐴1𝐴3. 

(C) The biomass – free equilibrium 𝐸2(0,0, 𝐼) where 𝐼 =
𝜃(𝛽−𝜇2)

𝛾
.  

It is easy to check that the equilibrium 𝐸2 exists if 𝛽 > 𝛽∗,  
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where 𝛽∗ = 𝜇2.                                                                                                                       (12) 

(D) The coexistence equilibrium 𝐸∗(𝑃∗, 𝑀∗, 𝐼∗)  

where 𝑃∗ =
𝜅

𝑟
[(𝑟 + 𝜆) − 𝛼],𝑀∗ =

−𝐵2+√𝐵2
2−4𝐵1𝐵3

2𝐵1
, 𝐼∗ =

(𝜃+𝑀∗)(𝛽−𝜇2)

𝛾
 with 𝐵1 = 𝜇1 > 0, 𝐵2 =

𝑎𝜇1 + 𝑞𝐸 − 𝛼𝑃
∗, 𝐵3 = −𝛼𝑎𝑃

∗ < 0.  

The equilibrium 𝐸∗ will exist if (𝑖) 𝜆 > 𝜆∗,   (𝑖𝑖) 𝛽 > 𝛽∗,   (𝑖𝑖𝑖)  Δ2(𝜆) > 0,                          (13) 

where Δ2(𝜆) = 𝐵2
2 > 4𝐵1𝐵3 and the expressions of 𝜆∗ and 𝛽∗ are given in (11) and (12). 

 

 

3.4 Local stability analysis of the equilibrium points 

In this section we derive the stability conditions of different equilibrium points of system (1) 

using the method of linearization. The Jacobian of the model system (1) is evaluated to be 

     𝑉(𝑃,𝑀, 𝐼)

=

(

 
 
 
 
𝑟 −

2𝑟𝑃

𝜅
− 𝛼 + 𝜆 0 0

𝛼 −
𝑞𝐸𝑎

(𝑎 +𝑀)2
− 𝜇1 0

0
𝛾𝐼2

(𝜃 +𝑀)2
𝛽 −

2𝛾𝐼

𝜃 +𝑀
− 𝜇2)

 
 
 
 

.                                                      (14)     

 
 
Proposition 3.3 The trivial equilibrium 𝐸0(0,0,0) always exists and is locally asymptotically 

stable if (𝑖) 𝜆 < 𝜆∗ and (𝑖𝑖) 𝛽 < 𝛽∗ where the expressions of  𝜆∗ and 𝛽∗ are given in (11) and 

(12) respectively. 

Proof.  The characteristic equation of the Jacobian matrix evaluated at 𝐸0 is given by 

[𝜉 − (𝑟 + 𝜆 − 𝛼)] [𝜉 + {
𝑞𝐸𝑎

(𝑎 +𝑀)2
+ 𝜇1}] [𝜉 − (𝛽 − 𝜇2)] = 0. 

Therefore, the eigenvalues of the Jacobian matrix evaluated at 𝐸0 are 𝜉1 = (𝑟 + 𝜆) − 𝛼, 𝜉2 =

−{
𝑞𝐸𝑎

(𝑎+𝑀)2
+ 𝜇1} < 0, 𝜉3 = 𝛽 − 𝜇2. Thus 𝐸0 will be locally asymptotically stable when 𝜉1 < 0 

and 𝜉3 < 0 that is when if (𝑖) 𝑟 + 𝜆 < 𝛼 ⇒ 𝜆 < 𝜆∗ and (𝑖𝑖) 𝛽 < 𝜇2 ⇒ 𝛽 < 𝛽∗ where 𝜆∗, 𝛽∗ are 

given in (11) and (12) respectively. Hence the proposition is proved. 
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Remark 3.1 From (11), (12) and (13) it is clear that if 𝐸0 is locally asymptotically stable, then 

𝐸1, 𝐸2 and 𝐸∗ will not exist. 
 

Proposition 3.4 The industry–free equilibrium 𝐸1(𝑃̅, 𝑀̅, 0) if exists following the conditions 

given in (11), will be locally asymptotically stable if 𝛽 < 𝛽∗ where 𝛽∗ is given by (12). 
 

Proof. The characteristic equation of the Jacobian matrix (14) evaluated at 𝐸1 is given by: 

                                          (𝜉 +
𝑟𝑃̅

𝜅
) (𝜉 + {

𝑞𝐸𝑎

(𝑎 + 𝑀̅)2
+ 𝜇1}) (𝜉 − {𝛽 − 𝜇2}) = 0.                   (15) 

The eigenvalues are evaluated to be 𝜉1 = −
𝑟𝑃̅

𝜅
< 0, 𝜉2 = −(

𝑞𝐸𝑎

(𝑎+𝑀̅)2
+ 𝜇1) < 0 and 𝜉3 = 𝛽 − 𝜇2. 

All the eigenvalues will have a negative real part if 𝛽 − 𝜇2 < 0 ⇒ 𝛽 < 𝛽∗ where 𝛽∗ is given by 

(12). Therefore, the industry–free equilibrium 𝐸1, if exists following (11), will be locally 

asymptotically stable if 𝛽 < 𝛽∗. Hence the proposition is proved. 

Remark 3.2 From (12), (13), and Proposition 3.3, it is evident that if 𝐸1 is locally asymptotically 

stable, then 𝐸2 & 𝐸∗ will not exist and 𝐸0 will be unstable. 
 

Proposition 3.5 The biomass–free equilibrium 𝐸2(0,0, 𝐼) if exists following the conditions given 

in (12), will be locally asymptotically stable if  𝜆 < 𝜆∗ where 𝜆∗ is given by (11). 

Proof. The characteristic equation of the Jacobian matrix (14) evaluated at 𝐸2 is given by: 

                                      (𝜉 − {𝑟 + 𝜆 − 𝛼}) (𝜉 + {
𝑞𝐸

𝑎
+ 𝜇1}) (𝜉 + {𝛽 − 𝜇2}) = 0.                      (16) 

The eigenvalues are evaluated to be 𝜉1 = 𝑟 + 𝜆 − 𝛼, 𝜉2 = −(
𝑞𝐸

𝑎
+ 𝜇1) < 0 and 𝜉3 =

−(𝛽 − 𝜇2) < 0 (following the existence condition of 𝐸2 that is given in (12)). All the eigenvalues 

will have a negative real part if 𝑟 + 𝜆 < 𝛼 ⇒ 𝜆 < 𝜆∗ where 𝜆∗ is given by (11). Therefore, the 

biomass–free equilibrium 𝐸2, if exists following (12), will be locally asymptotically stable if 𝜆 <

𝜆∗. Hence the proposition is proved. 

 
Remark 3.3 From (11), (13) and Proposition 3.3 we assert that if 𝐸2 is locally asymptotically 

stable, then 𝐸1 & 𝐸∗ will not exist and 𝐸0 will be unstable. 
 

Proposition 3.6 The coexistence equilibrium 𝐸∗(𝑃∗, 𝑀∗, 𝐼∗) if exists following the conditions 

specified in (13) will be locally asymptotically stable. 
 

Proof. The characteristic equation of the Jacobian matrix (14) evaluated at 𝐸∗ is given by: 
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                                      (𝜉 +
𝑟𝑃∗

𝜅
) (𝜉 + {

𝑞𝐸𝑎

(𝑎 +𝑀∗)2
+ 𝜇1}) (𝜉 +

𝛾𝐼∗

𝜃 +𝑀∗
) = 0.                      (16𝑎) 

The eigenvalues are evaluated to be 𝜉1 = −
𝑟𝑃∗

𝜅
< 0, 𝜉2 = −(

𝑞𝐸𝑎

(𝑎+𝑀∗)2
+ 𝜇1) < 0 and 𝜉3 =

−
𝛾𝐼∗

𝜃+𝑀∗ < 0. Hence all the eigen values have negative real part. Therefore, the coexistence 

equilibrium 𝐸∗, if exists following (13), will be locally asymptotically stable. Hence the 

proposition is proved. 
 

3.5 Analysis of the bionomical equilibrium 

We now study the bionomical equilibrium associated with the model system (1). Bionomical 

equilibrium is defined as the level at which the total revenue (TR) generated by selling the 

harvested trees or biomass in an economic equilibrium stage is equal to the total cost (TC) that 

has been incurred to harvest the biomass or mature trees in our case. In fact, bionomic equilibrium 

is achieved when the economic rent is completely dissipated. 

Let, 𝑝 be the selling price per unit of biomass and 𝑐 is the cost incurred to harvest per unit of 

biomass. Then the net economic revenue generated at any time 𝑡 is given by 

                                                     Π(𝑃,𝑀, 𝐼, 𝐸, 𝑡) = (
𝑞𝑝𝑀

𝑎 +𝑀
− 𝑐)𝐸.                                            (17) 

 
We derive the bionomic equilibrium ℰ𝐵𝑁(𝑃∞,𝑀∞, 𝐼∞, 𝐸∞) by solving the following equations: 

𝑟𝑃 (1 −
𝑃

𝜅
) − 𝛼𝑃 + 𝜆𝑃 = 0, 

𝛼𝑃 −
𝑞𝐸𝑀

𝑎 +𝑀
− 𝜇1𝑀 = 0,                                                                                                              (18) 

(𝛽 −
𝛾𝐼

𝜃 +𝑀
) 𝐼 − 𝜇2𝐼 = 0. 

(
𝑞𝑝𝑀

𝑎 +𝑀
− 𝑐)𝐸 = 0. 

 
 
Hence,  

𝑃∞ =
𝜅

𝑟
[(𝑟 + 𝜆) − 𝛼] ,𝑀∞ =

𝑎𝑐

𝑝𝑞 − 𝑐
 , 𝐼∞ =

[(𝜃𝑝𝑞 + 𝑎𝑐) − 𝜃𝑐][𝛽 − 𝜇2]

𝛾(𝑝𝑞 − 𝑐)
 ,  

𝐸∞ =
𝛼(𝑎+𝑀∞)

𝑞
[
𝑃∞

𝑀∞
−
𝜇1

𝛼
].                                                                                                            (19)  
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Therefore, we obtain the following proposition: 

 

Proposition 3.6 The model system (1) will have a feasible bionomic equilibrium 

ℰ𝐵𝑁(𝑃∞,𝑀∞, 𝐼∞, 𝐸∞)  if (𝑖) 𝜆 > 𝜆∗  , (𝑖𝑖) 𝑞 > 𝑞∗  , (𝑖𝑖𝑖) 𝛽 > 𝛽∗  , (𝑖𝑣)
𝑃∞

𝑀∞
>

𝜇1

𝛼
. The 

expressions of 𝑃∞,𝑀∞, 𝐼∞, 𝐸∞ are given in (19), 𝑞∗ =
𝑐

𝑝
. The expressions of  𝜆∗ and 𝛽∗ are given 

in (11) and (12) respectively.  
 

3.6 Optimal harvesting policy 

 In this section we 

analyse the optimal harvesting policy of a renewable resource in presence of industrialization 

related harvesting. The main objective of this study is to determine a harvesting policy so that 

the biomass-based industries can survive sustainably without depleting or over exploiting the 

biomass. This analysis is very much essential for sustainable socio-economic development of any 

population dependent on biomass-based industries. Let us denote the present valuation of a 

continuous time stream of revenue generated by harvesting biomass as 𝑄. Then 𝑄 which is the 

objective functional, is given by: 

 

                                              𝑄 = ∫ 𝑒−𝛿𝑡 (
𝑞𝑝𝑀(𝑡)

𝑎 +𝑀(𝑡)
− 𝑐)𝐸(𝑡)𝑑𝑡

∞

0

.                                       (20) 

 

Here 𝛿 is considered to be the instantaneous rate of annual discount. We use 

𝑃𝑜𝑛𝑡𝑟𝑦𝑎𝑗𝑖𝑛’𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 to maximize 𝑄 subject to the state equations given in (1) 

and control constraints 0 ≤ 𝐸 ≤ 𝐸𝑚𝑎𝑥. The associated Hamiltonian is given by: 

 

 𝐻 = 𝑒−𝛿𝑡 [
𝑞𝑝𝑀

𝑎+𝑀
− 𝑐] 𝐸 + 𝜆1 [𝑟𝑃 (1 −

𝑃

𝜅
) − 𝛼𝑃 + 𝜆𝑃] + 𝜆2 [𝛼𝑃 −

𝑞𝐸𝑀

𝑎+𝑀
− 𝜇1𝑀] 

        +𝜆3 [(𝛽 −
𝛾𝐼

𝜃 +𝑀
) 𝐼 − 𝜇2𝐼].                                                                                            (21) 

 
Here 𝜆1, 𝜆2, 𝜆3 are the adjoint variables. Next, we define the switching function 𝜎(𝑡) as: 

 

                                                  𝜎(𝑡) = 𝑒−𝛿𝑡 [
𝑞𝑝𝑀

𝑎 +𝑀
− 𝑐] −

𝜆2𝑞𝑀

𝑎 +𝑀
.                                      (22) 
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According to the 𝑃𝑜𝑛𝑡𝑟𝑦𝑎𝑗𝑖𝑛’𝑠 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒, the optimal control 𝐸(𝑡) that maximizes 

𝐻 must satisfy the following conditions: 

 

(i) 𝐸 = 𝐸𝑚𝑎𝑥 when 𝜎(𝑡) > 0 ⇒ 𝜆2𝑒
𝛿𝑡 < 𝑝 −

𝑐(𝑎+𝑀)

𝑞𝑀
.                                                        (23) 

(ii) 𝐸 = 0 when 𝜎(𝑡) < 0 ⇒ 𝜆2𝑒
𝛿𝑡 > 𝑝 −

𝑐(𝑎+𝑀)

𝑞𝑀
.                                                             (24) 

 

It should be noted that the usual shadow price is given by 𝜆2𝑒
𝛿𝑡 and the net economic revenue 

generated per unit harvest is 𝑝 −
𝑐(𝑎+𝑀)

𝑞𝑀
. It implies that if the shadow price is less than the total 

generated economic revenue per unit harvest, then 𝐸 = 𝐸𝑚𝑎𝑥. Whereas, if the shadow price is 

higher than the net economic revenue generated per unit harvest, then 𝐸 = 0. Moreover, if the 

shadow price becomes equal to the net economic revenue per unit harvest, then 𝜎(𝑡) = 0 and in 

this case 𝐻 becomes independent of the control variable 𝐸, that is, 
𝜕𝐻

𝜕𝐸
= 0. This condition is 

necessary for a singular control ℰ∗ to exist and to become optimal over the interval (0, 𝐸𝑚𝑎𝑥). 

Hence the optimal harvesting policy is defined as: 

 

                                                           = 𝐸𝑚𝑎𝑥  , 𝜎(𝑡) > 0 

                                       𝐸(𝑡)           = ℰ∗,                𝜎(𝑡) = 0.                                                         (25) 

                                                           = 0  ,                𝜎(𝑡) < 0. 

 

Now when 𝜎(𝑡) = 0 then one can see that  

                                                                  𝜆2 = 𝑒
−𝛿𝑡 [𝑝 −

𝑐(𝑎 +𝑀)

𝑞𝑀
].                                          (26) 

According to 𝑃𝑜𝑛𝑡𝑟𝑦𝑎𝑗𝑖𝑛′𝑠𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 in order to determine the singular control the 

adjoint variables must satisfy: 

                                               
𝑑𝜆1
𝑑𝑡

= −
𝜕𝐻

𝜕𝑃
 ,
𝑑𝜆2
𝑑𝑡

= −
𝜕𝐻

𝜕𝑀
 ,
𝑑𝜆3
𝑑𝑡

= −
𝜕𝐻

𝜕𝐼
 ,                               (27)  

under the following conditions for optimal solution: 

𝑟𝑃 (1 −
𝑃

𝜅
) − 𝛼𝑃 + 𝜆𝑃 = 0, 
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𝛼𝑃 −
𝑞𝐸𝑀

𝑎 +𝑀
− 𝜇1𝑀 = 0,                                                                                                              (27𝑎) 

(𝛽 −
𝛾𝐼

𝜃 +𝑀
) 𝐼 − 𝜇2𝐼 = 0. 

 

Hence the equations described in (27) with the help of (27a) can be written as: 

                                
𝑑𝜆1
𝑑𝑡

=
𝜆1𝑟𝑃

𝜅
− 𝛼𝑒−𝛿𝑡 [𝑝 −

𝑐(𝑎 +𝑀)

𝑞𝑀
],                                                  (28) 

                                
𝑑𝜆2
𝑑𝑡

= −
𝑒−𝛿𝑡𝑝𝑞𝑎𝐸

(𝑎 +𝑀)2
+ 𝜆2 [

𝑞𝐸𝑎

(𝑎 +𝑀)2
+ 𝜇1] − 𝜆3

𝛾𝐼2

(𝜃 + 𝑀)2
 ,           (29) 

                                
𝑑𝜆3
𝑑𝑡

= (
𝛾𝐼

𝜃 +𝑀
)𝜆3.                                                                                     (30) 

 

Solving (28) we get: 

                                                   𝜆1 =
𝛼𝜅𝑒−𝛿𝑡

𝛿𝜅 + 𝑟𝑃
[𝑝 −

𝑐(𝑎 +𝑀)

𝑞𝑀
] + 𝐾3𝑒

𝑟𝑃𝑡
𝜅 .                          (31) 

 

Here 𝐾3 is an arbitrary constant. It should be noted that when 𝑡 → ∞, then the shadow price 𝜆1𝑒
𝛿𝑡 

must be bounded. Hence, we consider 𝐾3 = 0 and thus from (31) we get at optimal level 

 

                                                   𝜆1 =
𝛼𝜅𝑒−𝛿𝑡

𝛿𝜅 + 𝑟𝑃
[𝑝 −

𝑐(𝑎 +𝑀)

𝑞𝑀
].                                           (32) 

 

Again solving (30) one can obtain: 

                                                                        𝜆3 = 𝐾4𝑒
(
𝛾𝐼
𝜃+𝑀

)𝑡
.                                                 (33) 

 
Here 𝐾4 is an arbitrary constant. Noting that 𝜆3 is bounded as 𝑡 → ∞ we consider the constant 

𝐾4 = 0. Hence, from (33) we obtain 𝜆3 = 0 at optimal harvesting level. Now substituting 𝜆3 =

0 in (29) and solving for 𝜆2 one can get: 

                                                   𝜆2 = −𝑒
𝛿𝑡

𝑝𝑞𝑎𝐸

(𝑎 +𝑀)2
+ 𝐾5𝑒

[
𝑞𝐸𝑎

(𝑎+𝑀)2
+𝜇1]𝑡

.                            (34) 
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Here 𝐾5 is an arbitrary constant. As 𝜆2 is bounded as 𝑡 → ∞ we set 𝐾5 = 0. Hence from (34) we 

obtain: 

 

                                                                    𝜆2 = −𝑒
𝛿𝑡

𝑝𝑞𝑎𝐸

(𝑎 +𝑀)2
.                                            (35) 

 

Equating (26) and (35) one can easily calculate the optimal harvesting effort: 

 

                                                          𝐸𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = ℰ
∗ =

(𝑎 +𝑀)2

𝑝𝑞𝑎
[
𝑐(𝑎 +𝑀)

𝑞𝑀
− 𝑝].             (36) 

 

4 Numerical simulations 
 

In this section we perform numerical simulations of the model system (1) with the help of 

MATLAB2015a software. First we estimate the parameter values using Root Mean Square Error 

(RMSE) technique by fitting the year wise real time data of production of round wood timber, in 

𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 𝑅𝑊𝐸 (Round Wood Equivalent) unit, from Indian forestry resources during 2010 – 

2020, obtained in [19] with the state variable 𝑀(𝑡), of system (1) i.e., the mature trees that are 

allowed to cut for use in the biomass based industries. The fitted 𝑀(𝑡) is shown in Fig. 2. It can 

be clearly seen that our model is a good fit with the real time data for the following parameter 

set:  

 

𝑟 = 0.1, 𝜅 = 10, 𝛼 = 0.5, 𝑞 = 1.1, 𝐸 = 5.5, 𝑎 = 5,    𝜇1 = 0.1,        (37) 

𝛾 = 2.2;      𝜃 = 2.3, 𝜇2 = 0.1, 𝜆 = 0.45, 𝛽 = 0.5. 
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Figure 2. Data fitting of the state variable 𝑀(𝑡), of system (1) i.e., the mature trees that are 

allowed to cut for use in the biomass-based industries, against real time data of production of 

round wood timber, in 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 𝑅𝑊𝐸 (Round Wood Equivalent) unit, from Indian forestry 

resources during 2010 – 2020, obtained in [19] using Root Mean Square Error (RMSE) 

technique. 

To identify the sensitive parameters of system (1) we have performed PRCC (Partial Rank 

Correlation Coefficient) analysis with < 0.0001 . The sensitivity diagram is given in Fig. 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3. PRCC (Partial Rank Correlation Coefficient) analysis with 𝑝 < 0.0001 of the 

parameters of the system (1). 

 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

65 
 

From Fig. 3 it can be easily seen that  𝜆, i.e., the parameter measuring the rate of new plantation, 

𝐸 i.e., rate of harvesting of mature trees and 𝛽 i.e., the maximum reduction rate of that industries 

can attain sustainably are the most sensitive parameters. We therefore, verify the effects of these 

parameters on system (1). For the parameter values given in (37) using (11) & (12), one can 

calculate 𝜆∗ = 0.4 and 𝛽∗ = 0.1. Moreover, using (13) the value of Δ2(𝜆) = 21.4025 > 0. 

Hence the existence conditions of 𝐸∗ as listed in (13) are satisfied by the parameter values given 

in (37). Again, following Proposition 3.6 the coexistence equilibrium 𝐸∗ is stable. The time 

evolution of system (1) for parameter values (37) is depicted in Fig. 4. It shows all the solution 

trajectories converge to locally asymptotically stable 𝐸∗(5 , 2.8814 , 0.9421). 

Again for 𝜆 = 0.45(> 𝜆∗ = 0.4) one can calculate Δ1(𝜆) = 21.4025 > 0. Therefore, following 

(11) the industry – free equilibrium 𝐸1(5 , 2.8814, 0) exists. We fix 𝛽 = 0.05 to satisfy 𝛽 <

𝛽∗ = 0.1 keeping all parameters as in (37). Therefore, according to Proposition 3.4 the 

equilibrium 𝐸1 is locally asymptotically stable. This case is represented in Fig. 5. It shows for 

these chosen parameter values all trajectories converge to stable 𝐸1 i.e, 𝑃(𝑡),𝑀(𝑡) persists in 

stable condition in long run. But 𝐼(𝑡) tends to zero for sufficiently large 𝑡.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Time evolution of the populations of model system (1). The parameter 𝜆 = 0.45, 𝛽 =

0.5 and other parameters are as in (37).  
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Figure 5. Time evolution of the populations of model system (1). The parameter 𝜆 = 0.45, 𝛽 =

0.05 a 

 

Figure 5. Time evolution of the populations of model system (1). The parameter 𝜆 = 0.45, 𝛽 =

0.05 and other parameters are as in (37).  

.  

Next, we consider 𝜆 = 0.35 < 𝜆∗ = 0.4 and 𝛽 = 0.5 > 𝛽∗ = 0.1 keeping other parameters same 

as in (37). Following (12) and Proposition 3.5, in this case, the biomass – free equilibrium 𝐸2 is 

locally asymptotically stable and all system trajectories converge to 𝐸2 (0 , 0, 0.4182) for 

sufficiently large 𝑡. This case is shown in Fig. 6. It should be noted that, in this case, even though 

forestry biomass is completely depleted, the forestry biomass – based industries survive, though 

in a very low level. The reason for that, is the alternative resources that the forestry biomass – 

based industries can avail when the primal resource of forestry – biomass is absent or scarce. 
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This phenomenon is due to consideration of modified Leslie – Gower interaction between 

industry ready mature trees and forestry biomass-based industries.  

 
Next, we consider 𝜆 = 0.35 < 𝜆∗ = 0.4 and 𝛽 = 0.5 > 𝛽∗ = 0.1 keeping other parameters same 

as in (37). Following (12) and Proposition 3.5, in this case, the biomass – free equilibrium 𝐸2 is 

locally asymptotically stable and all system trajectories converge to 𝐸2 (0 , 0, 0.4182) for 

sufficiently large 𝑡. This case is shown in Fig. 6. It should be noted that, in this case, even though 

forestry biomass is completely depleted, the forestry biomass – based industries survive, though 

in a very low level. The reason for that, is the alternative resources that the forestry biomass – 

based industries can avail when the primal resource of forestry – biomass is absent or scarce. 

This phenomenon is due to consideration of modified Leslie – Gower interaction between 

industry ready mature trees and forestry biomass-based industries.  
 

Finally, we set 𝜆 = 0.35 < 𝜆∗ = 0.4 and 𝛽 = 0.05 < 𝛽∗ = 0.1 keeping other parameters same 

as in (37). According to Proposition 3.3 the biomass – free and industry – free equilibrium 𝐸0 is 

locally asymptotically stable for this choice of parameters. The time series solution of system (1) 

in this case is depicted in Fig. 7 that shows system trajectories converge to stable 𝐸0 (0,0,0) for 

sufficiently large 𝑡. 
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Figure 6. Time evolution of the populations of model system (1). The parameter 𝜆 = 0.35, 𝛽 =

0.5 and other parameters are as in (37).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 7. Time evolution of the populations of model system (1). The parameter 𝜆 = 0.35, 𝛽 =

0.05 and other parameters are as in (37).  

 

To check the effect of harvesting effort we plot the solution trajectories of the state variable 𝐼(𝑡) 

representing industrialization for different values of 𝐸 in Fig. 8. We have taken 𝐸 = 0.5, 2.5 and 

4.5. The value of 𝜆∗ = 0.4 and 𝛽∗ = 0.1 for each of these chosen values of 𝐸. Moreover, Δ2(𝜆) =

7.1025, 5.5625 and 13.7025 respectively for 𝐸 = 0.5, 2.5 and 4.5. Therefore, following (13) 

and Proposition 3.6 the coexistence equilibrium 𝐸∗ exists and stable for each of these chosen 

values of 𝐸. From Fig. 8 one can see that for increasing effort the density of mature trees (Fig. 

8a) and biomass-based industries (Fig. 8b) decreases. Due to higher effort, mature trees are cut 

at a higher rate and we can see that initially the density of the industries increase for a short period 

of time. But increasing felling rate of mature trees is not reciprocal to the growth of premature 

trees. Therefore, after sufficient time, there is an disparity between the number of trees becoming 

mature from prematurity and the number of mature trees cut for industrialization. Gradually the 

later one overcomes the former. Therefore, after some time the industries depending on mature 

tree biomass decrease due to unavailability of mature trees.  
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However, the population density of industries does not tend to zero, due to availability of 

alternative resources. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 8. Time evolution of the 𝑀(𝑡) and 𝐼(𝑡) populations of model system (1) for different 

values of 𝐸 = 0.5, 2.5, 4.5. The parameter 𝜆 = 0.45, 𝛽 = 0.5,  and other parameters are as in 

(37).  

 

 According to the above analysis we assert that just by increasing effort we will not be able 

to sustain forestry biomass – based industries. Therefore, to optimize industrialization we have 

to apply optimal harvesting strategy. For that purpose, we consider 𝑝 = 0.1 and 𝑐 = 0.01 where 

𝑝 be the selling price per unit biomass and 𝑐 is the cost incurred to harvest per unit biomass. 

Using (36) we have calculated that 𝐸𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = ℰ
∗ = 2.0522 for the values of the parameter as 

specified in (37). In this case 𝜆 = 0.45 > 𝜆∗ = 0.4, 𝛽 = 0.5 > 𝛽∗ = 0.1, Δ2(𝜆) = 9.07 >

0. Hence, according to Proposition 3.6 the coexistence equilibrium 𝐸∗ is locally asymptotically 
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stable. Using these parameter values, in Fig. 9 we have fitted the simulated data with respect to 

the state variable 𝑀(𝑡) with the estimated requirement data of round wood timber, in 

𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 𝑅𝑊𝐸 (Round Wood Equivalent) unit, in India during 2021 – 2030 that has been 

obtained from [19]. It shows when 𝐸 = ℰ∗ = 3.6522 then our simulated data provides a good fit 

to the estimated data in 95% confidence interval. Therefore, our analysis shows that if the 

harvesting of mature trees is performed with optimal harvesting effort 𝐸 = 𝐸𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = ℰ
∗ =

2.0522, then the estimated requirement of round wood timber in India during 2021 – 2030 can 

be fulfilled.  

 
5 Summary and discussions 

 In this article we 

have proposed a deterministic mathematical model using nonlinear differential equations to 

determine sustainable harvesting strategy of forestry biomass for forestry dependent 

industrialization. The main objective of this study is to analyse a dynamical mathematical model 

to determine strategies so that forestry biomass and forestry biomass-based industries both can 

sustain for socioeconomic development of any society. We know that forestry biomass is 

constantly being depleted due to manmade issues such as harvesting, increasing forestry-based 

industries, soil pollution etc. or natural calamities. Therefore, an optimal and adequate harvesting 

strategy should be prepared for sustainable development. In view of this, we have considered an 

age structured forestry biomass model that incorporates the interactions among pre-mature trees, 

mature trees and forestry biomass – based industries.  We have assumed that for industrial 

purpose only mature trees can be harvested. Premature trees are restricted for use in industrial 

activities.  Further, we have considered modified Leslie – Gower response function to incorporate 

the effect of alternative resources for the biomass – based industries in case the biomass resource 

for industries is scarce. 
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Figure 9. Data fitting of the state variable 𝑀(𝑡), of system (1) i.e., the mature trees that are 

allowed to cut for use in the biomass-based industries, against the estimated requirement data of 

round wood timber, in 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑚3 𝑅𝑊𝐸 (Round Wood Equivalent) unit, in Indian forestry 

resources during 2021 – 2030, obtained in [19] using Root Mean Square Error (RMSE) 

technique and 95% confidence interval (shown by the dotted lines). 

We have determined positivity, boundedness and permanence of the solutions of system (1). The 

local asymptotic stability conditions of the equilibrium points have been analysed using 

linearization technique. Through PRCC sensitivity analysis we have found that the parameters 

representing the rate of new plantations (𝜆), maximum reduction rate of that industries can attain 

(𝛽) and the harvesting effort 𝐸 are the most sensitive parameters and can significantly alter the 

system dynamics. We have shown that the coexistence equilibrium 𝐸∗ will exist in stable mode 

if the rate of plantation of new trees 𝜆 is greater than a critical value 𝜆∗ and maximum reduction 

rate of that industries can attain i.e., 𝛽 is higher than a threshold value 𝛽∗ along with Δ2(𝜆) > 0. 

If 𝜆 < 𝜆∗, 𝛽 > 𝛽∗ then due to low number of new plantations, forestry biomass dies and system 

converges to stable biomass – free equilibrium 𝐸2. It is interesting to observe that, even if in 

absence of forestry biomass, biomass – based industries may survive due to the availability of 

alternative resources that has been incorporated through the modified Leslie – Gower function. 

However, if 𝜆 > 𝜆∗, 𝛽 < 𝛽∗, Δ1(𝜆) are satisfied, then as the maximum reduction rate of that 

industries can attain is lower than the critical value 𝛽∗ the biomass – based industries will die out 

in long run and system converges to stable industry – free equilibrium 𝐸1. But if new plantation 

rate and maximum reduction rate of that industries can attain are both less than the critical values, 
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i.e., if 𝜆 < 𝜆∗, 𝛽 < 𝛽∗, then all the populations die out. In this case system trajectories converge 

to stable trivial equilibrium 𝐸0. Assuming 𝑝 be the selling price per unit biomass and 𝑐 is the cost 

incurred to harvest per unit biomass, we have analysed the existence of bionomic equilibrium 𝐸∞ 

and shown that this equilibrium will exist if new plantation rate, the maximum reduction rate of 

that industries can attain and the rate of harvesting 𝑞 is higher than the evaluated threshold values 

provided the ratio of the density of 𝑃(𝑡) and 𝑀(𝑡) at 𝐸∞ exceeds a critical value. Parameters 

have been estimated using the real time data of production of round wood timber, in 

million m3 RWE (Round Wood Equivalent) unit, from Indian forestry resources during 2010 – 

2020, obtained in [19] using Root Mean Square Error (RMSE) technique. It has been shown that 

for estimated parameters our model is a good fit. Extensive numerical simulations have been 

performed with the estimated parameters to determine the effects of the sensitive parameters on 

the system dynamics. It has been shown that increasing effort to harvest mature trees will not 

result in increasing industries. Rather it will decrease the biomass – based industries, as rate of 

harvesting in general will not reciprocate the rate of maturation of premature trees. Therefore, 

for sustainability harvesting should be performed optimally. We have determined the expression 

of the optimal harvesting effort in this purpose using Pontryajin’s Maximum Principle. Moreover, 

with the help of data of future estimate of demand of timber in India during 2021 – 2030 obtained 

from [19] it has been shown with 95% confidence interval, that if the harvesting effort is in 

accordance with the optimal harvesting level, then the future requirement of timber in India, 

during the time period 2021 – 2030 can be fulfilled. This finding is an important one form the 

application point of view of our model. 

Therefore, the findings of our study are interesting and can be used to form harvesting strategies 

so that forestry – biomass and forestry-based industries both can sustain simultaneously, by 

fulfilling the need of sustainable socio – economic development. 
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Abstract: In this article we further study several distances between two interval valued 

intutionistic fuzzy soft sets(IVIFSsets). IVIFSset is a combination of soft set and interval 

valued intutionistic fuzzy set. Based on these distances, similarity measure between two 

IVIFS sets is calculated. An algorithm is developed  for  decision making problems. 

Lastly an example is given to show the possible application of similarity measure for 

knowledge discovery in COVID-19 patients.. 

Key words: soft set, interval valued intuitionistic fuzzy soft set, similarity measure,  

decision making.  
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1. Introduction: 

In 1965 Prof. L. A. Zadeh[22] pioneered the concept of fuzzy set theory. After then 

several researchers have extended this concept in many directions.  As a result interval 

valued fuzzy set[23], intuitionistic fuzzy set[1], interval valued intuitionistic fuzzy set[2], 

soft set[7,11], fuzzy soft set[12], interval valued fuzzy soft set[21],  intuitionistic fuzzy 
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soft set[13], interval valued intuitionistic fuzzy soft set[6], etc have been introduced. 

Researchers like S. M. Chen [4], Hu and Li[5] etc. have studied the problem of similarity 

measure between fuzzy sets and vague sets. P. Majumdar and S. K. Samanta[8,9,10] have 

studied the similarity measure of soft sets, fuzzy soft sets and intuitionistic fuzzy soft 

sets. W. K. Min[14] also introduced similarity in soft set theory. Cagman and Deli[3] 

studied similarity measure of intuitionistic fuzzy soft sets [19].  A. Mukherjee and S. 

Sarkar introduced the concept of similarity measure for interval valued fuzzy soft 

sets[15] and interval valued intutionistic fuzzy soft sets[16]. Similarity measures are very 

useful to make good decisions. For Further study we refer the papers [17],[18] and [20]. 

In this manuscript different  similarities like Normalized Hamming Distance and 

Normalized Euclidean Distance are used.  These techniques are very useful to deal with 

the problems whose attributes are numerous.  The proposed similarity measures applied 

to diagnose the Covid-19 will be extremely useful to case history. In medical diagnosis, 

decision-making .It is  very much complicated because some medical tests are too 

expensive and time taking. Some time condition of the patient is not stable, the doctor 

did not have enough time to wait for the results of a medical test . So they should take 

urgent steps to save the patient's life. In such conditions.These kinds of studies help them 

to take effective decisions to save a patient's life. In the days of COVID-19 patients are 

large in number and the medical test is very much expensive, time-taking . The 

laboratories are not enough to fulfll such a big task. Some patients had financial  problems 

and the condition of some patients iscritical  they did not have enough time to wait. To 

handle that pandemic situation, select an ideal case (a patient who wassuffering from 

COVID-19). By calculation of similarity measure of any suspected patient with an ideal 

case to diagnosis the COVID-19. Through this technique  doctors can take fast a decision 

to diagnosis the disease and create a helping environment in medical diagnosis..  

 
In this work, we further study several distances between two interval valued intutionistic 

fuzzy soft sets. Based on these distances, similarity measure between two interval valued 

intutionistic fuzzy soft sets is calculated. An algorithm is developed  for  decision making 

problem. . Lastly an example is given to show the possible application of similarity 

measure for knowledge discovery in COVID-19 patients. 
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2. Preliminaries 

      In this section we briefly review some basic definitions related to interval-valued 

intuitionistic fuzzy  soft sets which will be used in the rest of the paper. 

 

Definition 2.1[22] Let X  be a non empty collection of objects denoted by x. Then a 

fuzzy set (FS for short)   in X is a set of ordered pairs having the form 

( )( ) , :x x x X =   , 

Where the function  : 0,1X →  is called the membership function or grade of 

membership (also degree of compatibility or degree of truth) of x in  .The interval M = 

 0,1 is called membership space. 

 

Definition 2.2[23] Let X be a non empty set and D be the set of closed subintervals of 

the interval [0, 1]. Then an interval-valued fuzzy set A in X is  an expression A given by 

 ( , ( )) :AA x M x x X=  , where MA:X → 𝐷. 

 

Definition 2.3[7,11] Let U  be an initial universe and E  be a set of parameters. Let 

( )P U  denotes the power set of U  and A E . Then the pair ( ),F A  is called a soft set 

over U , where F  is a mapping given by ( ):F A P U→ . 

Definition 2.4[12] Let U be an initial universe and E be a set of parameters. Let 
UI  be 

the set of all fuzzy subsets of U and A  B . Then the pair (F,A) is called a fuzzy soft set 

over U, where F  is a mapping given by : UF A I→ . 
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Definition 2.5[21] Let U be an initial universe and E be a set of parameters, a pair(F,E) 

is called an interval valued- fuzzy soft  set over F(U), where F is a mapping given by 

F:E  F(U), 

        An interval-valued fuzzy soft set is a parameterized family of interval-valued fuzzy 

subsets of U, thus, its universe is the set of all interval-valued fuzzy sets of U, i.e. F(U). 

An interval-valued fuzzy soft set is also a special case of a soft set because  it is still a 

mapping from parameters to F(U),  e  , F(U)  is referred as the interval fuzzy value 

set of parameters e , it is actually an interval-valued fuzzy set of U where x U  and 

e E , it can be written as: 

 ( )( ) ( , ( )) :F eF e x x x U=   

where, F(U)  is the interval-valued fuzzy membership degree that object x holds on 

parameter. 

 

Definition 2.6[1] Let X  be a non empty set. An intuitionistic fuzzy set (IFS in short)   

in X  is a set of ordered triples given by, 

{( , ( ), ( )) : }x x x x X   =   

where, the functions : [ 0,1]X →  and : [ 0,1]X →  called degree of membership 

and the degree of non-membership of each element x X  to the set   respectively and 

0 ( ) ( ) 1x x   +   for each x X . 

Definition 2.7[2] An interval-valued intuitionistic fuzzy set (IVIFSet in short)   over 

a universe X  is defined as the object of the form ( ) ( ) , , :x x x x X   =  , where 
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( )  ( ): 0,1x X D →  and ( )  ( ): 0,1x X D →  are functions such that the condition: 

( ) ( )0 1x X sup x sup x     +   is satisfied (where  ( )0,1D  is the set of all 

closed intervals of  0,1 ). 

Definition 2.8 [13] Let U  be an initial universe and E  be a set of parameters. Let 
UIF

be the set of all intuitionistic fuzzy subsets of U  and A E . Then the pair ( ),F A  is 

called an intuitionistic fuzzy soft set overU , where F  is a mapping given by 

: UF A IF→ . 

Definition 2.9[6] Let U  be an initial universe and E  be a set of parameters. Let 
UIVIFS  

be the set of all interval valued intuitionistic fuzzy sets on U  and A E . Then the pair 

( ),F A  is called an interval-valued intuitionistic fuzzy soft set (IVIFSset) for short) over

U , where F  is a mapping given by : UF A IVIFS→ . 

3. Similarity measure based on distance 

    In this section we further study several distances between two interval-valued 

intuitionistic fuzzy soft sets and based on this distances similarity measure is defined. 

Also study some basic properties of similarity measure with application in decision 

making problems.  

Definition 3.1  Let  1 2 3, , ,......., nU x x x x= be the universe,  1 2 3, , ,......., mE e e e x= be the 

set of parameters, A, B  E and ( , )F A , ( , )G B  be two IVIFS Sets on U with their 

intuitionistic fuzzy approximation functions   ( ) ( , ( ), ( )) :A i A AF e x x x x U =  and  
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 ( ) ( , ( ), ( )) :B i B BG e x x x x U =  respectively, where  A(x): U→D[0,1] and 𝜈A(x): 

U→D[0,1] are functions such that xU, supA(x)+sup𝜈A(x)1 and D[0,1] is the set of 

all closed subintervals of  [0,1]. If A = B then we define the following distances between  

( , )F A  and ( , )G B : 

1. Hamming distance:  

  
1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

H F i j G i j F i j G i j

i j

d F G e x e x e x e x
n

   
= =

= − + −  

  (when n >m) 

                        

 
1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

H F i j G i j F i j G i j

i j

d F G e x e x e x e x
m

   
= =

= − + −  

   (when m >n) 

 

2. Normalized Hamming distance: 

                     

 
1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

NH F i j G i j F i j G i j

i j

d F G e x e x e x e x
mn

   
= =

= − + −  

 

 

 

 

 

 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

80 
 

3. Euclidean distance: 

                   

( ) ( ) 
1

22 2

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

E F i j G i j F i j G i j

i j

d F G e x e x e x e x
n

   
= =

 
= − + − 

 
  

  (when n >m) 

 

  ( ) ( ) 
1

22 2

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

E F i j G i j F i j G i j

i j

d F G e x e x e x e x
m

   
= =

 
= − + − 

 
  

   (when m >n) 

 

4. Normalized Euclidean distance: 

                       

( ) ( ) 
1

22 2

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n

NE F i j G i j F i j G i j

i j

d F G e x e x e x e x
mn

   
= =

 
= − + − 

 


 

 Where  
1

( )( ) sup ( )( ) inf ( )( )
2

F i j F i j F i je x e x e x  = +  

                          
1

( )( ) sup ( )( ) inf ( )( )
2

G i j G i j G i je x e x e x  = +  

                          
1

( )( ) sup ( )( ) inf ( )( )
2

F i j F i j F i je x e x e x  = +  

                         
1

( )( ) sup ( )( ) inf ( )( )
2

G i j G i j G i je x e x e x  = +
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Definition 3.2 Let U be universe and E be the set of parameters and (F,A), (G,B) be two 

IVIFS Sets on U , where A = B ⊆ E. Then based on these distances defined in definition 

3.1 similarity measure of (F,A) and (G,B) is defined as 

 

Sm(F,G) = 
1

1 ( , )d F G+
 ………………………… (3.1) 

 

Another similarity measure of (F, A) and (G,B) can also be defined as  

 

(F,G)Sm(F,G) = e d−
……………………….…... (3.2) 

 

where d(F,G) is the distance between the IVIFS Sets (F,A) and (G,B) and   is a positive 

real number. 

 

Definition 3.3 Let (F,A) and (G,A) be two IVIFS Sets defined on the universe U . Then 

the we define following distances between (F,A) and (G,A) as,

 
1

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n kk k

F i j G i j F i j G i j

i j

d F G e x e x e x e x
n

   
= =

 
= − + − 

 
 ……. (3.3) 

when n > m  

 
1

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n kk k

F i j G i j F i j G i j

i j

d F G e x e x e x e x
m

   
= =

 
= − + − 

 


 

 when m > n 
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 
1

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n kk k

F i j G i j F i j G i j

i j

d F G e x e x e x e x
mn

   
= =

 
= − + − 

 
 …. (3.4) 

 

 where k > 0. If k = 1 then equation (3.3) and (3.4) are respectively reduced to Hamming 

distance and Normalized Hamming distance. Again if k = 2 then equation (3.3) and (3.4) 

are respectively reduced to Euclidean distance and Normalized Euclidean distance. 

The weighted distance is defined as  

 
1

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n kk k
w

j F i j G i j F i j G i j

i j

d F G w e x e x e x e x
n

   
= =

 
= − + − 

 
 ...(3.5) 

when n > m,  

 
1

1 1

1
( , ) ( )( ) ( )( ) ( )( ) ( )( )

2

m n kk k
w

j F i j G i j F i j G i j

i j

d F G w e x e x e x e x
m

   
= =

 
= − + − 

 


 

 when m > n,  where w1,w2,w3,….,wn are the weights of x1,x2,x3,….,xn respectively, 

1

1
n

i

i

w
=

= and k > 0. Especially, if  k =1 then (3.5) is reduced to the weighted Hamming 

distance and If  k = 2, then (3.5) is reduced to the weighted Euclidean distance. 

 

Definition 3.4 Based on the weighted distance between two IVIFS Sets (F,A) and (G,A)  

given by equation (3.5), the similarity  measure between (F,A) and (G,A) is defined as  

 

Sm(F,G) = 
1

1 ( , )wd F G+      

…………………..  (3.6) 
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Theorem 3.5 If Sm(F,G) be the similarity measure between two IVIFS Sets (F,E) and 

(G,E) then 

 

(i) Sm(F,G) = Sm(G,F) 

(ii) 0≤ 𝑆m(𝐹, 𝐺) ≤ 1 

(iii) Sm(F,G) = 1 if and only if (F,E) = (G,E). 

 

Proof: Obvious from the definition 3.2. 

Definition 3.6 Let (F,A) and (G,B) be two IVIFS Sets over U. Then (F,A) and (G,B) are 

said be α-similar, denoted by ( , ) ( , )F A G B


 if and only if Sm((F,A),(G,B)) > α for α 

∈ (0,1). We call the two IVIFS Sets significantly similar if Sm((F,A),(G,B)) > 0.6 

Where A = B is the set of parameters. If  Sm((F,A),(G,B)) <  0.6 then the two sets are 

not significantly similar. For Sm((F,A),(G,B)) = 0.6  no decision can be taken 

immediately. 

Example 3,7 : Consider an interval valued intutionistic fuzzy soft set (F,A)   U is a set 

of six houses under the consideration of a decision maker to purchase. It is denoted by 

 1 2 3 4 5 6, , , , ,U h h h h h h= . A is asset of parameters,   

 1 2 3 4 5, , , ,A e e e e e= = { beautiful, expensive,  wooden, in good repair, in green 

surrounding}. The IVFS set (F,A) describes the attractiveness of the houses to the 

decision maker . 

Suppose  




1 1 2 3

4 5 6

( ) ,[0.5,0.8],[0.1,0.2] , ,[0.7,0.8],[0.1,0.2] , ,[0.5,0.7],[0.2,0.3] ,

,[0.65,0.78], ,[0.1,0.2] , ,[0.5,0.6],[0.2,0.4] , ,[0.6,0.8],[0.1,0,2]

F e h h h

h h h

=
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


2 1 2 3

4 5 6

( ) ,[0.6,0.8],[0.1,0.2] , ,[0.6,0.7],[0.2,0.3] , ,[0.4,0.6],[0.2,0.4] ,

,[0.6,0.7],[0.2,0.3] , ,[0.6,0.7],[[0.1,0.2] , ,[0.7,0.8],[0.1,0.2]

F e h h h

h h h

=
 




3 1 2 3

4 5 6

( ) ,[0.7,0.8],[0.1,0.2] , ,[0.5,0.6],[0.2,0.4] , ,[0.5,0.7],[0.2,0.3] ,

,[0.65,0.7],[0.1,0.3] , ,[0.7,0.8],[0.1,0.2] , ,[0.6,0.7],[0.1,0.2]

F e h h h

h h h

=
 




4 1 2 3

4 5 6

( ) ,[0.8,0.9],[0.05,0.1] , ,[0.6,0.7],[0.1,0.2] , ,[0.5,0.6],[0.2,0.3] ,

,[0.65,0.75],[0.15,0.25] , ,[0.7,0.8],[0.1,0.2] , ,[0.6,0.7,[0.05,0.15]]

F e h h h

h h h

=
 




5 1 2 3

4 5 6

( ) ,[0.7,0.85],[0.05.0.1] , ,[0.5,0.6],[0.2,0.3] , ,[0.6,0.7],[0.1,0.2] ,

,[0.5,0.7],[0.1,0.25] , ,[0.7,0.8],[0.025,0.1] , ,[0.7,0.8],[0.1,0.2]

F e h h h

h h h

=
 

The IVFS set (F,A) is a parameterized family  ( ), 1, 2,3, 4,5iF e i = of interval valued 

intuitionistic fuzzy sets of U and (F,A)=

 Type equation here.


1 1 2 3

4 5 6

( ) ,[0.5,0.8],[0.1,0.2] , ,[0.7,0.8],[0.1,0.2] , ,[0.5,0.7],[0.2,0.3] ,

,[0.65,0.78], ,[0.1,0.2] , ,[0.5,0.6],[0.2,0.4] , ,[0.6,0.8],[0.1,0,2]

F e h h h

h h h

=
 

    



2 1 2 3

4 5 6

( ) ,[0.6,0.8],[0.1,0.2] , ,[0.6,0.7],[0.2,0.3] , ,[0.4,0.6],[0.2,0.4] ,

,[0.6,0.7],[0.2,0.3] , ,[0.6,0.7],[[0.1,0.2] , ,[0.7,0.8],[0.1,0.2]

F e h h h

h h h

=

 

    



3 1 2 3

4 5 6

( ) ,[0.7,0.8],[0.1,0.2] , ,[0.5,0.6],[0.2,0.4] , ,[0.5,0.7],[0.2,0.3] ,

,[0.65,0.7],[0.1,0.3] , ,[0.7,0.8],[0.1,0.2] , ,[0.6,0.7],[0.1,0.2]

F e h h h

h h h

=

,

 

    



4 1 2 3

4 5 6

( ) ,[0.8,0.9],[0.05,0.1] , ,[0.6,0.7],[0.1,0.2] , ,[0.5,0.6],[0.2,0.3] ,

,[0.65,0.75],[0.15,0.25] , ,[0.7,0.8],[0.1,0.2] , ,[0.6,0.7,[0.05,0.15]]

F e h h h

h h h

=

,
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


5 1 2 3

4 5 6

( ) ,[0.7,0.85],[0.05.0.1] , ,[0.5,0.6],[0.2,0.3] , ,[0.6,0.7],[0.1,0.2] ,

,[0.5,0.7],[0.1,0.25] , ,[0.7,0.8],[0.025,0.1] , ,[0.7,0.8],[0.1,0.2]

F e h h h

h h h

=

.

 

                                      The tabular representation of (F,A), Table-1 

 

 

U      e1    e2    e3    e4   e5 

h1 [0.5,0.8],

[0.1,0.2]
 

[0.6,0.8], 

[0.1,0.2] 

[0.7,0.8], 

[0.1,0.2] 

[0.8,0.9], 

[0.05,0.1] 

[0.7,0.85], 

[0.05,0.1] 

h2 [0.7,0.8],

[0.1,0.2]
 

[0.6,0.7], 

[0.2,0.3] 

 

[0.5,0.6], 

[0.2,04] 

[0.6,0.7], 

[0.1,0.2] 

[0.5,0.6], 

0.2,0.3] 

h3 [0.5.0.7]. 

[0.2,0.3] 

[0.4,0.6], 

[0.2,0.4] 

[0.5,0.7], 

[0.2,0.3] 

[0.5,0.6], 

[0.2,0.3] 

[0.6,0.7], 

[0.1,0.2] 

h4 [0.65,0.78], 

[0.1,0.2] 

[0.6,0.7], 

[0.2,0.3] 

[0.65,0.7], 

[0.1,0.3] 

[0.65,0.75], 

[0.15,0.25] 

[0.5,0.7], 

[0.1,0.25] 

 

h5 [0.5,0.6], 

[0.2,0.4] 

[0.6,0.7], 

[0.1,0.2] 

[0.7,0.8], 

[0.1,0.2] 

[0.7,0.8], 

[0.1,0.2] 

[0.7,0.8], 

[0.025,0.1] 

h6 [0.6,0.8], 

[0.1,0.2] 

[0.7,0.8], 

[0.1,0.2] 

[0.6,0.7], 

[0.1,0.2] 

[0.6,0.7], 

[0.05,0.15] 

[0.7,0.8], 

[0.1,0.2] 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

86 
 

3.8: Consider the example 3.7. We construct the following algorithm 

Step 1.  Find the average of the membership interval and the average of the non-

membership interval. 

Step 2. Calculate their differences  D i , i=1,2,3,4,5. 

Step 3. Find the row sum. 

Step 4. Select the maximum of the row sum. 

Table-2 

               

 

U      e1    e2    e3    e4   e5 

h1 0.65, 0.15
 

0.7, 0.15 0.75, 

0.15 

0.85,0.075 

 

0.775,0.075 

h2 0.75,0.15 0.65,0.25 

 

0.55,0.3 0.65,0.25 0.55,0.25 
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h2 0.75,0.15 0.65,0.25 

 

0.55,0.3 0.65,0.25 0.55,0.25 

h3 0.6, 0.25 

 

0.5,0.3 

 

0.6,0.25 

 

0.55, 

0.25 

 

0.65,0.15 

 

h4 0.715,0.15 

 

0.65,0.25 

 

0.675,0.2 

 

0.7,0.2 

 

0.6,0.175 

 

 

h5 0.55,0.3 

 

0.65,0.15 

 

0.75,0.15 

 

0.75,0.15 

 

0.75,.0625 

 

h6 0.7,0.15 0.75,0.15 

 

0.65,0.15 

 

0.65,0.1 

 

0.75.0.15 
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Table-3 

 

               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Row sums of  h i 's ,  i=1,2,3,4,5,6. 

                 3.125 , 1.95 , 1.70 , 2.365 , 2.625 . 2.80 

U     D1    D2    D3    D4   D5 

h1 0.5
 

0.55 0.6 0.775 

 

0.7 

h2 0.6 0.4 

 

0.25 0.4 0.3 

h3  0.35 

 

0.2 

 

0.35 

 

0.3 

 

0.5 

 

h4 0.565 

 

0.4 

 

0.475 

 

0.5 

 

0.425 

 

 

h5 0.25 

 

0.5 

 

0.6 

 

0.6 

 

0.6775 

 

h6 0.55 0.6 

 

0.5 

 

0.55 

 

0.6 
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The customer will purchase the house h 1. 

4. Application in decision-making problem: 

  In this section we developed an algorithm in interval-valued intuitionistic fuzzy soft 

setting using similarity measure for a  decision making problem( COVID-19 patients).. 

For this we have to construct an IVIFS set for the ideal alterative and IVIFS sets for the 

available alternatives. Then we calculate the similarity measure between ideal alternative 

and available  

alternatives.  

The steps of the algorithm of this method are as follows: 

Step 1: Construct an  IVIFS set for the ideal alternative 

Step 2: Construct IVIFS sets for available alternatives  

Step 3: Calculate Normalized Hamming distances between ideal alternative and 

available alternatives. 

Step 4: Calculate similarity measure. 

Step 5: Estimate result by using the similarity. 

Example 4.1 Here we are giving an example of a decision-making method in interval-

valued intuitionistic fuzzy soft set setting using similarity measure.  

To handle that pandemic situation, select an ideal case (a patient who was suffering from 
 
covid-19). By calculation of similarity measure of any suspected patient with an ideal case to 
 
diagnosis the covid-19. Through this technique, doctors can take fast a decision to diagnosis 
 
the disease and create a helping environment in medical diagnosis. 
 
In this case, let us consider two a set, the  first one is  an ideal case (a patient  
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who was suffering from covid-19). and the second is a set of  and the second is a set of  
 
suspected patients P~=fP1, P2, P3, P4 }.  
 Let U be the universal set, which contains only two elements x1 and x2 i.e. U={x1,x2} and 

E is the set of parameters c1,c2,c3,c4,e5 i.e. E={c1,c2,c3,c4,e5}.  

The major problem of COVID-19 disease which is affected many people in  India . The 

following are the common symptoms found in India.. 

 

e1= Fever, e2= Dry cough, . e3 =Tiredness, e4= Headache, e5 =Loss of taste or smell, e6= 

difficulty breathing or shortness of breath. 

we choose a range belongs to [0,1]. For measuring the symptoms e1 to e5    as Low, 

Moderate, Highly moderate, High, Very high respectively (according to the medical 

experts and according to the range). For example the range [0.7, 0.9] is highly effected.... 

 

Step 1: Construct IVIFS Set (G,E) for ideal alternative: 

       Although the ideal alternative does not exist in real world, we construct the IVIFS  

 

 

Set for ideal alterative by taking membership value = 1, non-membership value =  

                                         Table-4 

(G ,E) e1 e2 e3 e4 e5 

x1 [1,1], [0,0] [1,1], [0,0] [1,1], [0,0] [1,1], [0,0] [1,1], [0,0] 

x2 [1,1], [0,0] [1,1], [0,0] [1,,}],  [0,0] [1,1], [0,0] [1,1], [0,0] 

 Tabular representation of IVFSset (G,E) for ideal alternative 
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Step 2: Construct IVIFS Sets (P1, E), (P2, E), (P3, E), (P4, E) for the four alternatives, 

which can be constructed by taking data from the medical experts. 

                                        Table-5 

(P1, E) e1 e2 e3 e4 e5 

x1 [0.4,0.5], [0.3,0.4] [0.3,0.4], [0.4,0.6] [0.2,0.3], [0.4,0.7] [0.4,0.6], [0.2,0.4] [0.4,0.5], [0.4,0.5] 

x2 [0.2,0.3], [0.6,0.7] [0.5,0.6], [0.2,0.4] [0.5,0.6], [0.3,0.4] [0.7,0.8], [0.0,0.2] [0.4,0.6], [0.2,0.4] 

 Tabular representation of IVFSset (P1, E)  

                                         Table-6 

                                         Table-6  

(P2, E) e1 e2 e3 e4 e5 

x1 [0.35,0.5], [0.25,0.45] [0.2,0.4], [0.5,0.6] [0.15,0.35], [0.4,0.65] [0.4,0.6], [0.2,0.4] [[0.3,0.5], [0.4,0.5] 

x2 [0.1,0.25], [0.5,0.75] [0.4,0.6], [0.3,0.4] [0.4,0.55], [0.3,0.45] [0.6,0.75], [0.1,0.2] [0.3,0.5], [0.1,0.4] 

 Tabular representation of IVFSset (P2, E)  

                                                    Table-7 

(P3, E) e1 e2 e3 e4 e5 

x1 [0.1,0.2], [0.7,0.8] [0.2,0.4], [0.5,0.7] [0.3,0.4], [0.5,0.6] [0.4,0.6], [0.3,0.5] [0.2,0.4], [0.4,0.6] 

x2 [0.2,0.3], [0.6,0.7] [0.2,0.4], [0.5,0.7] [0.1,0.3], [0.5.,0.7} [0.1,0.3],[0.5,0.7] [0.1,0.2], [0.6,0.8] 

Tabular representation of IVFSset (P3, E)  

                                             Table-8 

(P4, E) e1 e2 e3 e4 e5 

x1 [0.1,0.3], [0.5,0.7] [0.2,0.3], [0.5,0.7] [0.2,0.4], [0.5,0.7] [0.1,0.3, [0.5,0.7] [0.1,0.2], [0.6,0.8] 

x2 [0.2,0.4], [0.4,0.6} [0.1,0.2], [0.7,0.8] [0.2,0.3], [0.6,0.7] [0.1,0.3], [0.5,0.7] [0.1,0.2], [0.5,0.7] 

 Tabular representation of IVFSset (P4, E)  



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

92 
 

 

 

Step 3: Calculate Hamming distances: 

Now by definition 3.1 the Normalised Hamming distance between G and P1, P2, P3, P4 

are given by 

dH(G,P1)= 0.4975 , dH(G,P2)=0.4675 , dH(G,P3)=0.69 , dH(G,P4)= 0.75 

 

 Step 4: Calculate similarity measure: 

Now by equation (3.1) similarity measure between G and P1, P2, P3, P4 are given by,  

Sm(G,P1) = 0.609, Sm(G,P2) = 0.67, Sm(G,P3) = 0.58, Sm(G,P4) = 0.506. 

Step 5: Estimate the result: 

From the values of similarity measure the raking order of the four alternatives is  

P2> P1> P3> P4 

 

Step 6:       After that calculation the results are 
 
Patients Results- 
 
         
   
                                                   
                                                  P1                     keep him/ her  under observation 
                                                     
                                                   P2                     +ve 
               
                                                   P3                      +ve 
 
   
                                                   P4                      ─VE 
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5. Conclusion: 
   In this paper we further study several distances between two interval-valued 

intuitionistic fuzzy soft sets. The similarity measure is defined between two interval-

valued intuitionistic fuzzy soft sets. An algorithm is developed using for decision-making 

problem. An example is given to demonstrate the possible application of the proposed 

algorithm in COVID-19 patients. Similarity measures for interval valued intuitionistic 

fuzzy soft sets can also be applied to pattern recognition problem, medical diagnosis 

problem, image processing, image recognition, coding theory and several other problems 

that contain uncertainties.  
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Abstract 

The aim of this paper is to introduce compactness via grill 𝒢 in a neutrosophic topological space. 

We call it neutrosophic 𝒢 - compactness. We iintend to reveal its some basic properties and 

characterization theorems. We also obtain its relationship with neutrosophic compactness and 

other known things. Lastly, we exhibit a new method for one - point neutrosophic 

compactification of a locally compactness.  

Key Words: 𝒢 - compact, 𝒢 - cocover, neutrosophic topological space, grill, neutrosophic set. 

2010 AMS Subject Classification No.: 03E72; 54A05; 54A40; 54J05. 

1. Introduction: 

Everyday we are facing real life problems due to uncertainty. In order to handle such problems, 

Zadeh [15] introduced fuzzy set (FS, in short). Thereafter, Atanassov [1] invented intuitionistic 

fuzzy set (IFS, in short) by adding non - membership value along with membership value. But it 

was not sufficient to solve all real life problems due to uncertainty. In order to handle some types 

of problems on decision making under uncertainty, Smarandache [12] introduced the notion of 

neutrosophic set (NS, in brief) consisting with membership, non - membership and indeterminacy 

function defined on the universal set. These three functions are completely independent. 

Smarandache [13] further investigated on the applications of it. One can resolve real life problem 

in complex situation with the help of NS. The idea of neutrosophic topological space (NTS, in 

short) was referred in [9, 10]. 

 

The brilliant reveal of a grill was initiated by Choquet [2]. Subsequently, it became important 

convenient weapon for various topological studies. It is invented that grills are more suitable than 
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nets and filters. Roy and Mukherjee [8] introduced the notion of compactness in topological space 

via grills. Pal et al [6] introduced the notion of grill in NTS and neutrosophic minimal space. Pal 

and Dhar [5] introduced the notion of compactness in neutrosophic minimal space. Further, 

different researchers [3, 4, 7, 11, 14] investigated in NTS. Following their works, we have 

motivated to introduce and investigate basic properties and results of compactness via grills in 

NTS. We shall also focus to construct new types of neutrosophic spaces through grills. The study 

reveals as follows. We shortly mention some known definitions and results related to NS and 

NTS in next section. In section 3, we unfold neutrosophic 𝒢 - compact space. We also investigate 

some basic properties and theorems of this space. Section 4 reveals the method of construction 

of neutrosophic space via grills and focuses their basic properties. Section 5 and 6 indicate the 

conclusion and future motivation of the work. 

 

2. Preliminaries: 

We recollect some basic concepts and results for study of this article. 

 

Definition 2.1. [2] Set X as non - empty collection and   be its collection of subsets. Take 

A, B ⊆ X. Then 𝒢 is termed grill of X provided it obeys the axioms: 

(i) A is a member of 𝒢  as well as subset of B implies that B is a member of 

𝒢,  

(ii) the union of A and B is a member of it indicates either A is a member of 

𝒢 or B is a member of 𝒢. 

 

Definition 2.2. [8] Take 𝒢 as a grill on topological space (X, 𝜏).  A cover {Oi  : i ∈I} of it 

is a 𝒢.- cover when we can obtain I0  as finite subset of I for which X \ ∪𝑖∈I0 𝑂𝑖 is not a 

member of 𝒢. 

 

Definition 2.3. [9] An NS K in a whole set W is a set where each element consists with 

truthness, falseness and indeterminacy membership values appear from three 

independent functions, denoted by fK, gK, hK in [0,1]. It is as below: 

K = {(x, fK(x), gK(x), hK(x)) : x W}  

and each of fK(x), gK(x), hK(x)) is a member of unit closed interval with the condition 

that sum of them lies between 0 to 3.   
 

Definition 2.4. [9] We mean 0𝑁 and 1𝑁 as empty and whole NSs respectively on W where   

(i) 0𝑁 = {(w, 0, 1, 1) : w ∈ W}. 

(ii) 1𝑁 = {(w, 1, 0, 0) : w ∈ W}. 
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Definition 2.5. [9] Consider 𝑁 a collection of NSs of W. Then 𝑁 is termed 

neutrosophic topology (NT, in brief) of W provided the following axioms 

are satisfied: 

(i) The null and whole NSs are members of 𝑁. 
(ii) 𝑁 is closed with respect to finite intersections. 

(iii) 𝑁 is closed with respect to arbitrary unions. 

Here (W, 𝑁) is said to be NTS  of W. Elements of 𝑁 are known as neutrosophic open sets 

(NOSs, in short) whereas complements of them are known as neutrosophic closed sets 

(NCSs, in short).  

 

Definition 2.6. [9] Consider V as NS in (W, 𝑁). The neutrosophic interior and neutrosophic 

closure, denoted by Nint(V) and Ncl(V) respectively  of V are given by  

Nint(V) = {K : K is a NOS in W where K  V}, 

Ncl(V) = {H : H is a NCS in W whee V  H}. 

 

Remark 2.7. [9] Clearly Ncl(V) (Nint(V)) is the smallest (largest) neutrosophic closed (open) 

set on W.  

 

Proposition 2.8. [9] For any NS V in (W, 𝑁), we have 

        (i) Nint(V
c) = (Ncl(V))c. 

       (ii) Ncl(V
c) = (Nint(V))c. 

 

Definition 2.9. [9] Consider U a non - null set. A sub - collection 𝒢 of NSs on U (not 

containing 0𝑁) and F, H ⊆ U is called a grill of U when Ɠ obeys following axioms: 

(i) F ∈ 𝒢, H  B gives H ∈ 𝒢, 

(ii) FH ∈ 𝒢 gives F ∈ 𝒢 or H ∈ 𝒢. 
 

3. Neutrosophic 𝒢 - compactness: 

We propose and invent idea of neutrosophic   -  compactness in NTS.. 

Definition 3.1. Consider the grill 𝒢 on NTS (X, T). A cover {𝑉𝛼 ∶  𝛼 ∈ J} of X is termed as 

neutrosophic 𝒢 - cover if ∃ a finite subset J0 of J such that 𝑋 ∖ ⋃𝛼∈J0𝑉𝛼 ∉ 𝒢. 
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Definition 3.2. Consider the grill 𝒢 on NTS (X, 𝑇). It is known as neutrosophic 𝒢 - compact if 

every open cover of X is neutrosophic   - cover. Henceforth, we denote neutrosophic compact by 

𝑁 - compact and neutrosophic   -  compact by 𝑁𝒢  - compact on a NTS (X, 𝑇).. 

Remark 3.3. (i) Clearly each 𝑁 - compact is 𝑁𝒢  - compact. 

(ii) Take 𝒢 = 𝑃(𝑋) ∖ 0𝑁, then 𝑁𝒢  - compactness converts to 𝑁 - compact. 

(iii) If (X, T𝒢) is 𝑁𝒢  - compact, so (X, T) is 𝑁 - compact and 𝑁𝒢  - compact.  

Theorem 3.4. A grill 𝒢 is 𝑁𝒢  - compact on (X, T) iff (X, T𝒢) is 𝑁𝒢  - compact. 

Proof. As T ⊆ T𝒢, (X, T) is 𝑁𝒢  - compact if (X, T𝒢) is 𝑁 - compact 

Consider (X, T𝒢) as 𝑁𝒢  - compact and {𝑉𝛼 ∶  𝛼 ∈ J} be a basic T  - open cover. Every 𝛼 ∈ J , 𝑈𝛼 =

𝑉𝛼 ∖ 𝐴𝛼 where 𝑉𝛼 ∈ 𝑇 and 𝐴𝛼 ∉ 𝐺. Then {𝑉𝛼 ∶  𝛼 ∈ J} is neutrosophic 𝑇 - open cover. So 𝑁𝒢  - 

compactness of (X, T), ∃ finite subset J0 of 𝐽 where 𝑋 ∖ ⋃𝛼∈J0𝑉𝛼 ∉ 𝒢 . 

Now, 𝑋 ∖ ⋃𝛼∈J0𝑈𝛼 = 𝑋 ∖ ⋃𝛼∈J0(𝑉𝛼 ∖ 𝐴𝛼)⊆(𝑋 ∖ ⋃𝛼∈J0𝑉𝛼) ⋃ (⋃𝛼∈J0𝐴𝛼) ∉ 𝒢 (as 𝐴𝛼 ∉ 𝒢,

∀ 𝛼 ∈ J0). Hence (X, T𝒢) is 𝑁𝒢  - compact. 

Remark 3.5. For a NTS (W, 𝜌), the following implication diagram holds: 

(W, 𝜌) is 𝑁 - compact ⟸ (W, 𝜌𝒢) is 𝑁 - compact 

                            ⇓                                              ⇓ 

(W, 𝜌) is 𝑁𝒢  - compact ⇔ (W, 𝜌𝒢) is 𝑁𝒢  -  compact 

 

Definition 3.6. A NTS (X, T) is referred neutrosophic quasi H - closed (shortly, NQHC) when 

each open cover U, 𝑋 = ⋃(𝑐𝑙(𝑈): 𝑈 ∈ 𝑈0) where  𝑈0 denotes finite sub - collection. 

 

Theorem 3.7. Consider a grill 𝒢 on a NTS (X, T) where  𝑇 ∖ 0𝑁 ⊆ 𝐺. If (𝑋, 𝑇) is 𝑁𝒢  - compact. 

Then (X, T) is NQHC. 

 

Proof. Consider {𝑈𝛼 ∶  𝛼 ∈ J} as open cover of NTS. So for 𝑁𝒢  - compactness, ∃ finite set J0 of 

J where (𝑋 ∖ ⋃𝛼∈J0𝑈𝛼) ∉ 𝒢.Thus int(𝑋 ∖ ⋃𝛼∈J0𝑈𝛼) = 0𝑁. For otherwise, int(𝑋 ∖ ⋃𝛼∈J0𝑈𝛼) ∈

𝑇 ∖ 0𝑁 and hence (𝑋 ∖ ⋃𝛼∈J0𝑈𝛼) ∈ 𝒢, a contradiction. Hence 𝑋 = ⋃𝛼∈J0cl(𝑈𝛼) and X is NQHC. 
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Theorem 3.8. A NQHC (X, T) is neutrosophic 𝒢𝛿 - compact, where 𝒢𝛿 = {𝐴 ⊆ 𝑋 ∶ int(cl(𝐴)) ≠
0𝑁}, is a grill on X. 

Proof. Take {𝑉𝛼 ∶ 𝛼 ∈ 𝐽} as cover of (X, T). Then by NQHC, there is a finite set J0 of 𝐽 where 

𝑋 ∖ ⋃𝛼∈J0cl(𝑉𝛼) = 0𝑁. Take (𝑋 ∖ ⋃𝛼∈J0(𝑉𝛼) ∉ 𝒢𝛿 .In fact, (𝑋 ∖ ⋃𝛼∈J0(𝑉𝛼)) ∈ 𝒢𝛿 ⇒ int(cl(𝑋 ∖

⋃𝛼∈J0(𝑉𝛼) ≠ 0𝑁 ⇒ 𝑋 ∖ ⋃𝛼∈J0𝐶𝑙(𝑉𝛼) ≠ 0𝑁 a contradiction. Hence (X, T) is neutrosophic 𝒢𝛿  - 

compact. 

 

Definition 3.9. Consider grill 𝒢 on NTS (X, T). Then X is called neutrosophic 𝒢 - regular (𝑁𝒢 −

 regular, in brief) if for any NCS F in X with neutrosophic point (NP, in short) 𝑥 ∉ 𝐹, ∃ disjoint 

NOS U and V such that 𝑥 ∈ 𝑈 and 𝐹 ∖ 𝑉 ∉ 𝒢 . 
Theorem 3.10. Consider grill 𝒢 on NQHC (X, T). If (X, T) is 𝑁𝒢  – regular, then it is 𝑁𝒢  - 

compact. 

 

Proof. Take V as a neutrosophic open cover of (X, T). Every NP x ∈ 𝑋, there is some 𝑉𝑥 ∈ 𝑉 

where x∈ 𝑉𝑥 . So 𝑥 ∉ (𝑋 ∖ 𝑉𝑥) where (𝑋 ∖ 𝑉𝑥) is a NCS. Hence for 𝑁𝒢  - regularity, ∃ disjoint 

NOSs 𝐺𝑥 and 𝐻𝑥 where (X∖ 𝑈𝑥  ) ∖ 𝐻𝑥 ∉ 𝒢  and 𝑥 ∈ 𝐺𝑥. Let 𝐴𝑥 =(X∖ 𝑉𝑥 ) ∖ 𝐻𝑥. Now, 

cl(𝐺𝑥)⋂𝐻𝑥 = 0𝑁 ⇒ cl(𝐺𝑥) ⊆ 𝑋 ∖ 𝐻𝑥 ⊆ (𝑋 ∖ 𝐻𝑥) ⋃ 𝑉𝑥= [𝑋 ∖ (𝐻𝑥⋃ 𝑉𝑥)] ∪ 𝑉𝑥 = 𝐴𝑥 ∪ 𝑉𝑥 . 

Again, {𝐺𝑥 ∶ 𝑥 ∈ 𝑋} being a neutrosophic open cover of neutrosophic H - closed space, ∃NPs 

𝑥1 , 𝑥2 , … . . , 𝑥𝑛 in X such that 𝑋 = ⋃ cl(𝐺𝑥𝑖)
𝑛
𝑖=1 . Then 𝑋 = ⋃ cl(𝐺𝑥𝑖  )

𝑛
𝑖=1 ⊆ ⋃ (𝐴𝑥𝑖 ∪ 𝑈𝑥𝑖)

𝑛
𝑖=1 ⇒

𝑋 ∖ ⋃ 𝑈𝑥𝑖 ⊆ ⋃ 𝐴𝑥𝑖
𝑛
𝑖=1 ∉ 𝒢 𝑛

𝑖=𝑥 .Hence  (X, T) is 𝑁𝒢  -  compact. 

 

Theorem 3.11. A 𝑁𝒢  - compact neutrosophic Housdroff space (W, 𝓗) is 𝑁𝒢  - regular. 

 

Proof. Take F as a NCS of W and NP 𝑥 ∉ 𝑊. By Housdorffness, every NP 𝑦 ∈ 𝐹, ∃ disjoint 

NOSs 𝑈𝑦 and 𝑉𝑦 such that 𝑥 ∈ 𝑈𝑦 and 𝑦 ∈ 𝑉𝑦 . Now, {𝑉𝑦 ∶ 𝑦 ∈ 𝐹} ∪ {𝑋 ∖ 𝐹} is a neutrosophic 

open cover of X. So for 𝑁𝒢  - compactness of X, ∃ NP 𝑦1,  𝑦2…… , 𝑦𝑛 in F such that 𝑋 ∖

[(⋃ 𝑉𝑦𝑖
𝑛
𝑖=1 )⋃(𝑋 ∖ 𝐹)] ∉ 𝒢. Let 𝒢 = 𝑋 ∖ ⋃ cl(𝑉𝑦𝑖)

𝑛
𝑖=1 and H= ⋃ 𝑉𝑦𝑖

𝑛
𝑖=1 . Then Fand H are disjoint 

non - empty NOSs in X where 𝑥 ∈ 𝐺, 𝐹 ∖ 𝐻 = 𝐹 ⋂ (𝑋 ∖ ⋃ 𝑉𝑦𝑖)
𝑛
𝑖=1  = 𝑋 ∖ [(⋃ 𝑉𝑦𝑖

𝑛
𝑖=1 )⋃(𝑋 ∖

𝐹)] ∉ 𝒢. Hence (X, T) is 𝑁𝒢  - regular. 

 

Corollary 3.12. A 𝑁𝒢  - compact neutrosophic Housdroff space (W, 𝓗) is is neutrosophic H - 

closed and 𝑁𝒢  - regular.  Here 𝓗 \ 0𝑁 ⊆ 𝒢.  

 

Theorem 3.13. A 𝑁𝒢  - regular neutrosophic H - closed space (W, 𝓗) is 𝑁𝒢  - compact. 
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Proof. Take V as a neutrosophic open cover of W. So every NP x∈W, there is some Vx∈V where 

x ∈ Vx. Thus x ∉ (W \ Vx) where (W\ Vx) is a NCS. By 𝑁𝒢  - regularity of W, ∃ disjoint NOSs Gx 

and Hx where (W \ Ux) \ Hx ∉   𝒢, x ∈ Gx. Take Ax= (W  \ Ux) \ Hx. So clGx ∩ Hx = 0𝑁⇒ clGx ⊆ X 

\ Hx ⊆ (X \ Hx) ∪ Ux = [X \ (Hx ∪ Ux)] ∪ Ux = Ax ∪ Ux. Further {Gx : x ∈ X} being neutrosophic 

open cover, there are NPs x1,x2,...,xn in W where W = ⋃ 𝑐𝑙𝐺𝑥𝑖
𝑛
𝑖=1 . So W = ⋃ 𝑐𝑙𝐺𝑥𝑖

𝑛
𝑖=1 ⊆⋃ (𝐴𝑥𝑖 ∪

𝑛
𝑖=1

𝑈𝑥𝑖) ⇒ W \ ⋃ 𝑈𝑥𝑖
𝑛
𝑖=1 ⊆ ⋃ 𝐴𝑥𝑖

𝑛
𝑖=1 ∉  𝒢 (as 𝐴𝑥𝑖 ∉  𝒢 for i = 1, 2,...,n). Thus (W, 𝓗) is 𝑁𝒢  - compact.  

From Corollary 3.12.and Theorem 3.13., we concludefollowing:  

 

Corollary 3.14. Consider 𝒢 on neutrosophic Housdroff space (W, 𝓗) where 𝓗 \ 0𝑁  ⊆ 𝒢. Then 

W is 𝑁𝒢  - compact iff W is neutrosophic H - closed and 𝑁𝒢  -regular.  

Theorem 3.15. Consider U a neutrosophic open sub-base of NTS (X, T). Then neutrosophic open 

𝒢 - cover of X corresponds a 𝒢 - cover with elements of U.  

 

Proof. Take 𝓒 as all neutrosophic open 𝒢 - covers of X. Evidently, 𝓒 is non – empty and take 

{Pα} as a linearly ordered neutrosophic subset of it. So ⋃ 𝑃𝛼𝛼  is neutrosophic covering. Consider 

it as neutrosophic 𝒢 - covering. Otherwise ∃ 𝒢1, 𝒢2,..., 𝒢n ∈ ⋃𝑃𝛼 where X \ ⋃ (𝒢𝑖) ∉  𝒢
𝑛
𝑖=1 . Now, 

∃ a Pβ ∈ C such that 𝒢1, 𝒢2,..., 𝒢n ∈ Pβ. So Pβ ∉ C, a contradiction. Thus, a maximal element P is 

there in C. Take 𝓚 as open where  ∉  𝒢. So  ∃ finitely many 𝒢1, 𝒢2,..., 𝒢n ∈ P where X \ (𝓚 ∪ 𝒢1 

∪ 𝒢2 ∪···∪ 𝒢n) ∉  𝒢 . Take 𝓚1, 𝓚2 ∈ T and 𝓚1, 𝓚2 ∉ P. Thus, X \ (𝓚1 ∪ 𝒢 1 ∪ 𝒢2 ∪···∪ 𝒢n) = A1 ∉
  𝒢 and X \ (𝓚2 ∪ V1 ∪ V2 ∪···∪ Vm) = A2 ∉  𝒢, for sub - collections { 𝒢 1, 𝒢2,..., 𝒢n}, {V1, V2,...,Vm} 

of P. Take B = X \ [(𝓚1 ∩ 𝓚2) ∪ (𝒢1 ∪ 𝒢2 ∪···∪ 𝒢n) ∪ (V1 ∪ V2 ∪···∪ Vm)]. So B ⊆ A1 ∪ A2. As A1 

∪ A2 ∉  𝒢, so B ∉  𝒢. Hence (𝓚1 ∩ 𝓚2) ∈T \ P. Take 𝓚  ∉ P and 𝓚 ⊆ 𝒢, where 𝒢 and 𝓚are 

NOSs. Then X \ (𝓚 ∪ 𝒢1 ∪ 𝒢2∪···∪ 𝒢n) ∉ 𝒢 for finitely many 𝒢1, 𝒢2,..., 𝒢n ∈ P. Thus  X \ (𝒢 ∪ 𝒢1 

∪ 𝒢2 ∪···∪ 𝒢n) ∉  𝒢 and hence 𝒢 ∈ T \ P. Now it is quite enough to prove U ∩ P is a neutrosophic 

𝒢 - cover of X. Let 𝑥 be a NP where x ∈ X. Since P is a neutrosophic open cover of X, ∃ a 𝒢 ∈ P 

where x ∈ 𝒢. Since U is a neutrosophic sub-base for X, ∃ 𝓚 1, 𝓚 2,..., 𝓚n ∈ U where 𝑥 ∈ 𝓚1 ∩ 𝓚2 

∩···∩ 𝓚n ⊆ 𝒢. So ∃ an 𝓚i  where 𝓚i∈P. If 𝓚 i ∉ P, then ⋃ (𝒦𝑖) ∉ 𝑃
𝑛
𝑖=1 . Thus 𝒢  ∉  P, a 

contradiction. Hence 𝑥 ∈ 𝓚i ∈ U ∩ P and thus, U ∩ P is a neutrosophic 𝒢 - cover. 

 

4. Construction of new neutrosophic topological space via grills: 

Here we explore a new compact neutrosophic Hausdorff space.  

 

Theorem 4.1. Consider a grill 𝒢 on a NTS (X, T). Take X∗ = X∪𝑥 where x  ∉  𝑋. Then f 

Ṕ(X∗)→ Ṕ(X∗), where  

                                    f(Ǡ) = clǠ, if clǠ ∉ 𝒢, for A ⊆ 𝑋 

                                   f(Ǡ) = clǠ ∪ 𝑥, if clǠ∈ 𝒢 , for Ǡ ⊆ 𝑋 

                                   f(Ǡ) = (cl Ǡ \𝑥) ∪ 𝑥, if 𝑥 ∈ Ǡ 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

102 
 

is Kuratowski neutrosophic operator,  

 

 where 

(i) each T - open is T∗ - open in X, 

(ii) if K is T∗ - open,  K ∩ X is T - open.  

Proof. Firstly, explore f satisfies Kuratowski neutrsophic closure axioms. Clearly f(0𝑁) = 0𝑁 (as 

0𝑁 ∉  𝒢) and for Ǡ ⊆ X∗ , Ǡ ⊆ f(Ǡ),. We verify f(Ǡ ∪ ℬ) = f(Ǡ) ∪ f(ℬ) where ℬ in X∗.  

 

Case - I. Take cl(Ǡ ∪ ℬ) ∉  𝒢. So f(Ǡ ∪ ℬ) = cl(Ǡ ∪ ℬ) = cl Ǡ ∪ cl ℬ = f(Ǡ) ∪ f(ℬ).  

Further cl(Ǡ ∪ ℬ) ∈ 𝒢, so clǠ or clℬ ∈ 𝒢 and f(Ǡ ∪ ℬ) = cl(Ǡ ∪ ℬ) ∪ 𝑥 = cl Ǡ ∪ clℬ ∪ 𝑥 = f(Ǡ) 

∪ f(ℬ).  

 

Case-II. Take  𝑥 ∈ ℬ and clǠ ∉  𝒢. Hence f(Ǡ ∪ ℬ) = cl((Ǡ ∪ ℬ) \ 𝑥) ∪ 𝑥= cl(Ǡ ∪ (ℬ \   𝑥)) ∪  𝑥 

= cl Ǡ ∪ cl(ℬ \ 𝑥) ∪ 𝑥 = f(Ǡ) ∪ f(ℬ). If cl Ǡ ∈ 𝒢, then f(Ǡ ∪ ℬ) = cl((Ǡ ∪ ℬ) \ 𝑥) ∪ 𝑥= cl Ǡ ∪  𝑥 
∪ cl(ℬ \  𝑥) ∪  𝑥 = f(Ǡ) ∪ f(ℬ).  

 

Case-III. 𝑥 ∈ Ǡ and x ∈ ℬ Here f(Ǡ ∪ ℬ) = cl((Ǡ ∪ ℬ) \  𝑥) ∪ 𝑥 = cl(Ǡ \  𝑥) ∪ cl(ℬ \  𝑥) ∪ 𝑥 = 

f(Ǡ) ∪ f(ℬ). Now we prove f(f(Ǡ)) = f(Ǡ), where Ǡ ⊆ X∗.  
Case - (i): Ǡ ⊆X. If cl Ǡ  ∉  𝒢, f(f(Ǡ)) = f(cl Ǡ) = cl Ǡ = f(Ǡ) and clǠ ∈ 𝒢, then f(f(Ǡ)) = f(clǠ ∪  𝑥) 

= f(clǠ) ∪ f(𝑥) = cl Ǡ ∪ 𝑥 = f(Ǡ).  

Case - (ii): x ∈ Ǡ. If cl(Ǡ \ 𝑥) ∉  𝒢, then f(f(Ǡ)) = f[cl(Ǡ \  𝑥) ∪ 𝑥] = f[cl(Ǡ \ 𝑥)] ∪ f(𝑥) = cl(Ǡ \  𝑥) 

∪ 𝑥 = f(Ǡ). If cl(Ǡ \  𝑥) ∈ 𝒢, then f(f(Ǡ)) = f[cl(Ǡ \  𝑥) ∪ 𝑥] = f[cl(Ǡ \  𝑥)] ∪ f(𝑥) = cl(Ǡ \  𝑥) ∪ 𝑥 = 

f(Ǡ). It implies f is a Kuratowski neutrosophic closure operator on X∗ and gives a NT T∗ on X∗  

where f(Ǡ) = T∗ - cl Ǡ , for any Ǡ ⊆ X∗.  

(a) Take Ǜ ⊆ X neutrosophic T - open. Then f(X∗ \ Ǜ) = cl[(X∗ \ Ǜ) ∪ 𝑥] ∪ 𝑥 = cl(X \ Ǜ) ∪ 𝑥 = (X 

\ Ǜ) ∪  𝑥 = X∗  \ Ǜ, so Ǜ is neutrosophic T∗ - open.  

(b) As Ǜ is neutrosophic T∗ - open, f(X∗ \ Ǜ) = X∗ \ Ǜ ... (i). Now, x ∉ Ǜ ⇒cl[(X∗ \ Ǜ) ∪ 𝑥] ∪ 𝑥 = 

X∗ \ Ǜ ⇒ cl(X \ Ǜ) ∪ 𝑥 = X∗ \ Ǜ ⇒ cl(X \ Ǜ) = (X \ Ǜ) ⇒ (X \ Ǜ) is neutrosophic T - closed ⇒ Ǜ 

(=Ǜ ∩ X) is neutrosophic T - open. Further, 𝑥 ∈ Ǜ ⇒ cl(X∗ \ Ǜ) = X∗ \ Ǜ and since 𝑥∈ (X∗  \ Ǜ)) 

⇒cl[(X ∪ 𝑥) ∩ (X* \ Ǜ)] = (X \  𝑥) ∩ (X* \ Ǜ) ⇒ cl[X ∩ (X \ Ǜ)] = X ∩ (X \ Ǜ) ⇒ cl(X \ (Ǜ ∩ X)) 

= X \ Ǜ ∩ X ⇒ Ǜ ∩ X is neutrosophic T - open.  

 

Theorem 4.2. Consider grill 𝒢 on a NTS (X, T) where each NP x ∈ X, 𝑥 ∉  𝒢. Adjoin to X a new 

NP y where y  ∉ X. Then ∃ a NT on X∗ = X ∪ 𝑦 obeying below: 

(a) X∗ is neutrosophicT1.  

(b) X is neutrosophic dense in X∗. 
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Proof.  Take (X∗, T∗) like as Theorem 4.1. For NP 𝑥 where x ∈ X,  f(𝑥) = 𝑥 as cl(𝑥) = 𝑥 ∉ 𝒢 and 

f(𝑦) = cl(𝑦) ∪ 𝑦 = 𝑦. It shows (a). Again clX = X ∈ 𝒢, f(X) = clX ∪ 𝑦 = X ∪ 𝑦 = X∗, showing (b). 

 

Theorem 4.3. Consider 𝒢 on neutrosophic Housdroff space (W, 𝓗) where for every NP α, α ∈ 
W, α ∉  𝒢.. If U is open neighbourhood of α where clU ∉  𝒢, then 𝓗 ∗ = 𝓗 ∪ β (β ∉ 𝓗) obeying 

as below: 

(a) 𝓗 ∗ is neutrosophic Hausdorff.  

(b) 𝓗 is neutrosophic dense in 𝓗 ∗. 

Proof. Take (W ∗, 𝓗 ∗) of Theorem 4.1. We note clW ∈ G, T∗ - clW = W∗ and so (b). For (a), α, β 

as distinct NPs of W. For neutrosophic Hausdorffness of (W, 𝓗)), α and β are strongly separated 

through Ǜ, Ṽ which are NOSs in W and W∗. By hypothesis, for any NP α, there is a neutrosophic 

𝓗 - open neighbourhood Ǜ of α such that clǛ∉ 𝒢. Let N = W ∗ \ Ǜ. Since clǛ ∉ 𝒢, we have f(Ǜ) 

= Ǜ. Thus N is a neutrosophic open neighbourhood of β in W ∗. Consequently, Ǜ and N are the 

required disjoint 𝓗 ∗ - open neutrosophic neighbourhoods of α and β respectively in W ∗. Hence 

W∗ is Hausdorff, proving (a). 

Now we state the following theorem without proof. The theorem can be proved with the help of 

general techniques.  

 
Theorem 4.4. Consider a neutrosophic Hausdorff space (W, 𝓗) which is neutrosophic locally 

compact,. Introducing NP α (where α ∉ W), construct extension space W ∗ = W ∪ α having the 

following:  

(a) W ∗ is neutrosophic Hausdorff.  

(b) W is neutrosophic dense in W ∗.  

(c) W ∗ is neutrosophic compact.  

5. Conclusion:   

In this article, we have defined compactness in neutrosophic topological space with respect to a 

grill. We have called it neutrosophic 𝒢 - compactness. We have investigated some basic 

properties of this newly defined compactness. Some characterization theorems of neutrosophic 

𝒢 - compactness have also been established in neutrosophic topological space. We have also 

established the relationship of neutrosophic 𝒢 - compactness with neutrosophic H - closed space 

and other known things. Lastly we have proposed  a new method of construction of neutrosophic 

Hausdorff space and investigated some of its basic properties. 

 

6. Future motivation of the work:  

It is expected that the work done will motivate in further investigation of the compactness in 

neutrosophic topological space with respect to grills. It is hoped that the notion of compactness 
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which have been discussed here can also be extended to neutrosophic supra bi tri, soft, multiset 

topological spaces, etc.      
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ABSTRACT: In this article we have studied on the notion of statistically pre-Cauchy fuzzy real-

valued double sequences and defined it with Orlicz function. We have proved some relations 

between statistically Cauchy sequence and statistically pre-Cauchy sequences and established 

some results in terms of Orlicz function in a different approach.   

KEY WORDS: pre-Cauchy, statistically Cauchy, Orlicz function, fuzzy double sequence. 
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1. INTRODUCTION AND PRELIMINARIES 
The idea Statistical convergence was introduced by Steinhaus [29] and Fast [11] and then 

reintroduced by Schoenberg [28]. Thereafter different classes of sequences were introduced 

based on this concept and has become an active area of research such as summability theory, 

number theory, Fourier analysis and Banach spaces etc. Later on it was studied with 

summability theory by Fridy [12], Kwon [14], Nuray [20], Salat [27] and some others. In the 

beginning the study was restricted to real or complex sequences. In 2000 Kwon [14], Nuray [20] 

and Savas [22] extended the idea to apply to sequences of fuzzy numbers. Bilgin [2] has 

introduced -statistical and strong -Cesaro convergence of sequences of fuzzy real numbers. 

 The concept, statistical convergence is based on the natural density of the set of positive 

integers which is a subset of the set of natural numbers ℕ. 
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 The natural density of a subset F of ℕ is denoted by (K) and defined by 

 (F) = Fknk
nn


→

:
1

lim , where the vertical bars represent the cardinality of the enclosed 

set. 

If F  ℕ is a finite set, then (F) = 0 and for any set F  ℕ, (FC) = 1- (F). 
 

     A sequence x = (xk) of real number is said to be statistically convergent to the number  if for 

every  > 0, the set  ( ) −  |:| kxNk  has natural density zero i.e. 

 ( ) −  |:| kxNk  = 0. Mursaleen and Osama [18] extended this idea to double 

sequences and established a relation between statistical convergence and strongly Cesàro 

summable double sequences.The idea statistically pre-Cauchy for real valued sequence was 

introduced by Connor, Fridy and Kline [5] and established some important results. Colak et al. 

[4] studied fuzzy -statistically pre-Cauchy and established some properties defied by modulus 

function. 

Definition 1.1 A sequence of real numbers, x = (xk) is said to be statistically pre-Cauchy if for 

very >0,  −
→

 |:|),(
1

lim
2 qp

m
xxmqp

m
 = 0. 

 Tripathy [31] introduced the concept of density for subsets of ℕℕ as follows: 
 
 

Definition 1.2 The density (F), of a subset F of ℕℕ is defined by 


 

→
=

pi qj

F
qp

ji
pq

F ),(
1

lim)(
,

  and also (Fc) = ( ℕ  ℕ - F) = 1- (F). 

 

Definition 1.3 A double sequence of real numbers <ank> is said to be statistically convergent to 

a real number K if for a given 0 , the natural density is zero i.e. 

 ( ) 0:),( =−  Kakn nk . 
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      An Orlicz function M is defined by the mapping M: [0, ) → [0, ) which is continuous, non-

decreasing and convex such that M(0) = 0, M(x) > 0 for x > 0 and M(x)→  as x→ . If the 

convexity is replaced by sub-additive property i.e. M(x + y)  M(x) + M(y) then it is a modulus 

function. It is to be noted that M(0) = 0 and M(kx)  kM(x) for all  with 0 < k <1. 

      Different sequence spaces with Orlicz function are studied from by some authors. Among 

them we may mention [8, 9, 26]. Khan and Lohani [13] studied statistically pre-Cauchy with 

Orlicz function. 

      The concepts of fuzzy sets and its different operations were introduced by L. A. Zadeh.  

Subsequently several authors have studied different aspects of theory and application of fuzzy 

sets such as fuzzy topology, relations and fuzzy orderings, fuzzy measures theory, fuzzy 

mathematical programming, fuzzy sequences etc. Matloka [16] studied on bounded and 

convergent sequences of fuzzy numbers and established some important properties. Some 

remarkable contributions on sequences of fuzzy numbers were found in Nanda [19], Nuray [20], 

Kwon [14], Savas [23], Wu and Wang [34], Bilgin [2], Basarır and Mursaleen [3], Aytar [1], Fang 

and Huang [10], Esi [7], Subramanian and Esi [30] and many others. 

      A fuzzy real number Z is a fuzzy set on ℝ, more precisely can be defined by the mapping          

Z: ℝ → I (= [0, 1]), which associates each real number t with its grade of membership Z(t) and 

satisfy the following three conditions: 

               (i) Z is normal if there exists t ℝ such that Z(t) = 1.  

               (ii) Z is upper semi continuous if for each 0, Z-1([0, a+)), is open in the usual topology 

of ℝ, for all aI. 

              (iii) X is convex, if Z(t)  Z(s)Z(r) = min (Z(s), Z(r)), where s  t  r. 
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We denote the class of all upper-semi-continuous, normal, convex fuzzy real numbers by R(I) 

and R(I)* denotes the set of all positive fuzzy real numbers.  

 Each real number rℝ can be represent as a fuzzy number 
_

r  defined by  

                             
_

r (t) = 


 =

.otherwise  ,0

,for    ,1 rt
 

Thus we can say that R can be embedded into R(I). The additive identity and multiplicative 

identity in R(I) are denoted by 
_

0  and 
_

1  respectively. 

Since each fuzzy number X is express as grade of membership, the -level set of X is defined as 

follows           

                             [X] = _____________________

{ : ( ) },   0 1

{ : ( ) },  0.

t R X t for

t R X t for

 

 

    


   =

 

 

Let L be the set of all closed bounded intervals Z = [ZL, ZR] then we write Z  Y if and only if         ZL 

 YL and ZR  YR. We can write  

                             d(Z, Y) = max{ZL-YL, ZR -Y R}, where Z = [ZL, ZR] and Y = [YL, YR]. 

It is to be noted that (L, d) is a complete metric space. 

 We consider a mapping d : R(I)  R(I) → ℝ defined by 

                             d (Z, Y) = 
10

sup


d(Z, Y), for Z, YR(I), 

 and clearly d  is a metric on R(I). 

  A fuzzy real-valued double sequence is a double infinite array of fuzzy real numbers denoted 

by <Znk>, where Znk are fuzzy real numbers for each n, kN. 
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Definition 1.4 A fuzzy real-valued double sequence <Znk> is said to converge in Pringsheim’s 

sense to a fuzzy real number Z, if for a given  > 0, there exist real numbers n0 = n0() and k0 = 

k0(), so that 
_

d (Znk, Z) <  for all n  n0 and k  k0. 

Definition 1.5 A fuzzy real-valued double sequence <Znk> is said to be bounded if    there exist 

R(I)* such that |Znk|   for all n, kN i.e. 
kn,

sup d(Znk, 
_

0 ) < .  

Definition 1.6 A fuzzy real-valued double sequence <Znk> is said to be statistically convergent to 

a fuzzy real number Z, if for a given   0, ( ) ( ) 0,:, =
















  ZZdnm nk . 

  

 Savas [25], Tripathy and Dutta ([32, 33]), Dutta [6] studied some important classes of fuzzy real-

valued double sequences. Savas and Mursaleen [24] introduced statistically convergent and 

statistically Cauchy for double sequences of fuzzy numbers.  

We define the following notion for fuzzy real valued double sequences. 
 
 Definition 1.7 A fuzzy real-valued double sequence Z = (Zij) is said to be statistically pre-Cauchy 
if  

                               )( , ,:) ,(
1

lim ,

_

22,
pqij

kn
ZZdkjniji

kn
 = 0. 

 If there exist a E ⊆ N  N such that it contains ‘almost all n and k’ with  

                             
 

→
pn qk

E
qp

kn
qp

),(
1

lim
22,

 = 0, then the sequence is said to be statistically           

pre-Cauchy whenever ) ,(
_

pqij ZZd <  for almost all i and j. 
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2. MAIN RESULTS 
 
Theorem 2.1 A statistically convergent fuzzy real valued double sequence is statistically 

pre-Cauchy. But the converse may not be true. 

Proof. Let (Xnk) be statistically convergent fuzzy real-valued double sequence. Let F  ℕℕ 

and choose V  F such that F \ V is finite and V  {  ) ,( , ,:) ,(
_

pqij ZZdkjniji  < }, for 

some  > 0. Clearly (V) = 1 and we have  

                       

                                                            ((V))2 = 
 

→
pn qk

V
qp

kn
qp

),(
1

lim
22,

  

                                              )( , ,:) ,(
1

lim ,

_

22,
pqij

kn
ZZdkjniji

kn
. 

Since (V) = 1, it follows that 

                             
→

 )( , ,:) ,(
1

lim ,

_

22 pqij
n

ZZdkjniji
kn

 = 1. 

      Thus we conclude that (Znk) is statistically pre-Cauchy. 

Theorem 2.2 A bounded fuzzy real-valued double sequence (Znk) is statistically pre-Cauchy 

if and only if 

                              
 

→
pn

ij

qk

nk
n

ZZd
qp

),(
1

lim
_

22
 = 0. 

Proof. First suppose that  
 

→
pn

ij

qk

nk
n

ZZd
qp

),(
1

lim
_

22
 = 0.   For each  > 0, we have 
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                  
 

→
pn

ij

qk

nk
n

ZZd
qp

),(
1

lim
_

22
  








  )( , ,:) ,(

1
,

_

22 ijnk ZZdqjpikn
qp

  

Thus 
 

→
pn

ij

qk

nk
n

ZZd
qp

),(
1

lim
_

22
= 0. 

This implies that (Znk) is statistically pre-Cauchy. 

Conversely, let us suppose that (Znk) is statistically pre-Cauchy bounded fuzzy real-valued 

double sequence.  

Then = KZd nk
kn

)0,(sup
__

,

 and for n, k  N, we have 

                       
 pn

ij

qk

nk ZZd
qp

),(
1 _

22
 

2


 + 2K 










2
 )( , ,:) ,(

1
,

_

22


ijnk ZZdqjpikn

qp
 

                                                               < , for all n, k > PN. 

 Thus 
 

→
pn

ij

qk

nk
n

ZZd
qp

),(
1

lim
_

22
= 0. 

 Hence the proof. 

Theorem 2.3 Let Z = (Znk) is statistically pre-Cauchy fuzzy real-valued double sequence. If the 

sequence Z has a subsequence )(
jiknZ  converging to L and 

|}, ; ,:),{(|
1

inflim
,

Njiqkpnkn
pq

jiji
qp

 > 0, then Z is statistically convergent to L. 

Proof. Let u = ni and v = kj be such that u, v > KN for some i and j. Thus for a given >0, 

2
) ,(

_ 
LZd uv . Consider A = {(ni, kj): ni, kj > K; i, j N} and B = {(i, j): ) ,(

_

LZd ij }, then  



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

112 
 

   
2

 ) ,( ; ,:) ,(
1 _

22


 uvij ZZdqjpiji

qp
  

 



pui qvj

BA ji
qp , ,

22
),( 

1
  

                         = 







 |}, ; ,:),{(|

1
Njiqkpnkn

pq
jiji









 ||-|;,:j) ,(|

1
ji LZqjpii

pq
 

Since Z is statistically pre-Cauchy, the L.H.S of the above inequality is zero and since                

                      |}, ; ,:),{(|
1

inflim
,

Njiqkpnkn
pq

jiji
qp

 > 0,  

we have  

                       







 ||-|;,:j) ,(|

1
lim

ji
,

LZqjpii
pqqp

 = 0. 

This implies that Z is statistically convergent to L. 

Theorem 2.4 Let Z = (Znk) be a fuzzy real-valued double sequence and M be a bounded Orlicz 

function. Then Z is statistically pre-Cauchy if and only if  

                             
 

→
















pin qjk

ijnk

n

ZZd
M

qp , ,

_

22

),(
 

1
lim


 = 0, for some  > 0. 

Proof. Let  
 

→
















pin qjk

ijnk

n

ZZd
M

qp , ,

_

22

),(
 

1
lim


 = 0, for some  > 0. We have 
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 
 

→
















pin qjk

ijnk

n

ZZd
M

qp , ,

_

22

),(
 

1
lim


 =  



 
→





















),(

, ,

_

22

_

),(
 

1
lim

ijnk XXd

pin qjk

ijnk

n

ZZd
M

qp
 +     

               



 
→





















),(

, ,

_

22

_

),(
 

1
lim

ijnk XXd

pin qjk

ijnk

n

ZZd
M

qp
 ≥ 

 



 
→





















),(

, ,

_

22

_

),(
 

1
lim

ijnk XXd

pin qjk

ijnk

n

ZZd
M

qp
 

                                                                    ≥ M() 







 |,,),(:),(|

1 _

22
qkpnZZdkn

qp
ijnk   

Since the left hand side is zero, so it gives                                               

                              |,,),(:),(|
1 _

22
qkpnZZdkn

qp
ijnk    = 0. 

Conversely, we assume that Z is statistically Cauchy. Then for a given  > 0, we choose  such 

that M() < 
2


 and since M is bounded, there exist a positive integer K such that M(Z) < 

2

K
, for 

all Z ≥ 0.  

 

Thus we have  

                    
  
















pin qjk

ijnk ZZd
M

qp , ,

_

22

),(
 

1


 =  



  



















),(

, ,

_

22

_

),(
 

1

ijnk XXd

pin qjk

ijnk ZZd
M

qp
 +      
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                                                          



  



















),(

, ,

_

22

_

),(
 

1

ijnk XXd

pin qjk

ijnk ZZd
M

qp
 

                                                          M() +  



  



















),(

, ,

_

22

_

),(
 

1

ijnk XXd

pin qjk

ijnk ZZd
M

qp
 

                                                          
2


+ 

2

K








 |,,),(:),(|

1 _

22
qkpnZZdkn

qp
ijnk   

                                                         < , since Z is statistically pre-Cauchy. 

Thus we have  

                                  
 

→
















pin qjk

ijnk

n

ZZd
M

qp , ,

_

22

),(
 

1
lim


 = 0. 

Theorem 2.5 Let Z = (Znk) be a fuzzy real-valued double sequence and M be a bounded Orlicz 

function. Then Z is statistically convergent to L if and only if  

                                 
= =

→ 













p

n

q

k

nk

n

LZd
M

pq 1 1

_

),(1
lim


 = 0. 

Proof.  The proof of this theorem is similar to the previous theorem, so we omit the proof. 
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Abstract 

The concept of regular Ces𝑎́ro summability of double sequences of bicomplex number 

is presented in this article. The classes of bicomplex sequence space  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) and 

 2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) are introduced and discuss about their characteristics such as solidity, 

symmetry, completeness, and monotonicity. 

 

Keywords: Double Sequence, bicomplex numbers, Regular convergence, Ces𝑎́ro 

summability 
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1. Introduction 

Real or complex numbers can be arranged in infinite sequences within a sequence space. 

Under pointwise addition and scalar multiplication, it is a linear space. Numerous 

perspectives are being used to study sequence spaces. Summability theory is the study of 

linear transformations on sequence spaces.  In a 1713 letter to C. Wolf, G. Leibniz may 

have introduced the idea of summability theory. According to G. Leibniz, the oscillatory 

sequence 1-1+1-1+.. has a sum of 1/2. But G. Leibniz established the requirements for 

alternating series convergence two years later.  The summability theory expanded the 

field of sequence space research and brought about a significant development. The 

arithmetic mean approach of summability was first introduced by F. G. Frobenius in 

1880. Moreover, in 1890, the technique was generalized by E. Ces𝑎́ro as the (𝐶, 𝑘) 

method of summability. 
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For a considerable amount of time, there has been much research conducted on 

bicomplex numbers. Segre [12] first proposed the idea of bi-complex numbers in 1892. 

These numbers form an algebra that is isomorphic to the tessarines. Numerous scholars 

have also studied bi-complex number sequences, including Srivastava and Srivastava 

[15], Wagh [17], Sager and Sagir [11], and Rochon and Shapiro [10]. 

Throughout ℂ0, ℂ1 and ℂ2 denote the set of real, complex, and bi-complex numbers 

respectively. 

𝜉 =  𝑧1  +  𝑗𝑧2  =  𝑥1  +  𝑖𝑥2  +  𝑗𝑥3  +  𝑖𝑗𝑥4 is the bi-complex number given by Segre 

[12]. Here, 𝑧1, 𝑧2 are independent units whereas 𝑥1, 𝑥2, 𝑥3, and 𝑥4 are ℂ0 units. The 

independent units 𝑖, 𝑗 are such that 𝑖2  =  𝑗2  =  −1 and 𝑖𝑗 =  𝑗𝑖. ℂ2 represents the set of 

bi-complex numbers: ℂ2  =  {𝜉 ∶  𝜉 =  𝑧1  +  𝑗𝑧2;  𝑧1, 𝑧2  ∈ ℂ1(𝑖)}, where ℂ1(𝑖)  =

 {𝑥1  +  𝑖𝑥2 ∶  𝑥1, 𝑥2  ∈ ℂ0}. Over ℂ1(i), ℂ2 is a vector space. 𝑒1  =
1+𝑖𝑗 

2
 and 𝑒2  =

1−𝑖𝑗 

2
  

are the idempotent elements in ℂ2, satisfying the relations 𝑒1  +  𝑒2  =  1 and 𝑒1𝑒2  =  0. 

The unique expression for any bi-complex number 𝜉 =  𝑧1  +  𝑗𝑧2 is the product of 𝑒1 

and 𝑒2, so 𝜉 =  𝑧1  +  𝑗𝑧2  =  (𝑧1  −  𝑖𝑧2)𝑒1  +  (𝑧1  +  𝑖𝑧2)𝑒2 = 𝜇1𝑒1  + 𝜇2𝑒2, where 

𝜇1 = (𝑧1 −  𝑖𝑧2) and 𝜇2 = (𝑧1 + 𝑖𝑧2). 

A double infinite array of numbers is used to express a double sequence, denoted as 

(𝑥𝑛𝑘). The concept of convergence of double sequences was first developed in 1900 by 

Pringsheim [9]. A few early studies on double sequence spaces can be found in 

Bromwich [2] monograph.  Hardy [5] established the idea of regular convergence of 

double sequences. Over the past century, a great deal of development work on double 

sequences has been done since then. Numerous scholars have presented diverse types of 

double sequences and examined their distinct characteristics. Numerous researchers have 
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looked at the double sequence from different perspectives, including Devi and Tripathy 

[3, 4], Tripathy and Sarma [16], Basarir and Sonalcan [1], and many more. 

A double sequence (𝑥𝑛𝑘) is convergent in Pringsheim’s sense if 𝑥𝑛𝑘 converges to the 

limit 𝐿, as 𝑛 and 𝑘 tend to ∞ not dependent on one another. i.e., 

                                                  lim
𝑛,𝑘→∞

𝑥𝑛𝑘 = 𝐿.                                                             

It is found in Moricz [6] that (𝑥𝑛𝑘) converges in Pringsheim’s sense if and only if for 

every 𝜀 > 0, there exists an integer 𝑛𝑜 = 𝑛𝑜(𝜀) such that 

                        |𝑥𝑖𝑗 − 𝑥𝑛𝑘| ≤ 𝜀, for all min (𝑖, 𝑗, 𝑛, 𝑘) ≥ 𝑛𝑜. 

Convergence of ordinary sequence always implies boundedness of the sequence whereas 

Pringsheim’s sense convergence of double sequences doesn’t ensure boundedness of the 

double sequences.  The notion of regular convergence of double sequences was 

introduced by Hardy [5].  

A double sequence (𝑥𝑛𝑘) is regularly convergent if (𝑥𝑛𝑘) converges in Pringsheim’s 

sense as well as the limits 

lim
𝑛→∞

𝑥𝑛𝑘 = 𝐿𝑘, for each 𝑘𝑁 and                                       

lim
𝑘→∞

𝑥𝑛𝑘 = 𝑀𝑛 , for each 𝑛𝑁 exist.                                    

If the limits  𝐿 = 𝐿𝑘 = 𝑀𝑛 = 0, for all 𝑛, 𝑘 ∈ 𝑁 in the above definition, we get the 

definition of regular null double sequences.  

Therefore, the definition is identical to 

lim
max (𝑛,𝑘)→∞

𝑥𝑛𝑘 = 0. 

Shiue [14] developed the Ces𝑎́ro sequence space 𝐶𝑒𝑠∞, 𝐶𝑒𝑠𝑝 (1 <  𝑝 <  ∞), and it has 

been demonstrated that ℓ∞ ⊂ 𝐶𝑒𝑠𝑝 is tight for 1 <  𝑝 <  ∞. Subsequently, the non-
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absolute Ces𝑎́ro sequence spaces 𝑋𝑝 and 𝑋∞ were Ng and Lee defined [7, 8]. The classes 

of Ces𝑎́ro convergence were defined by Sever and Altay [13] in the sense of 

Pringsheim’s sense. 

2. Definitions and preliminaries 

Definition 2.1. Let 𝐸 be a subset of  2𝑏(Ω). Then 𝐸 is called 

i) Normal/Solid: If (𝑥𝑚𝑛 )∈ 𝐸 ⇒(𝑦𝑚𝑛 )∈ 𝐸, for all (𝑦𝑚𝑛) such that |𝑦𝑚𝑛| ≤ |𝑥𝑚𝑛|, 

for all 𝑚, 𝑛 ∈ ℕ. 

ii)  Monotone: If 𝐸 contains the canonical pre-images of all its step spaces.  

iii) Symmetric: if (𝑥𝑚𝑛 )∈ 𝐸 ⇒ (𝑥𝜋(𝑚,𝑛)) ∈ 𝐸, for all 𝑚, 𝑛 ∈ ℕ × ℕ. 

The bi-complex double-sequence 𝜁𝑚𝑛 is expressed as 𝜁𝑚𝑛 = 𝑎𝑚𝑛 + 𝑖𝑏𝑚𝑛 + 𝑗𝑐𝑚𝑛 +

𝑖𝑗𝑑𝑚𝑛. 

Definition 2.2. A bi-complex double sequence 𝜁 = (𝜁𝑚𝑛) is said to be regular Ces𝑎́ro 

summable if for every 𝜀 > 0, there exists 𝑛0(𝜀) such that  

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 = 𝜉

𝑚,𝑛

𝑠,𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥ 𝑛0; 

lim
𝑛→∞

1

𝑛
∑𝜁𝑚𝑡 = 𝜉𝑚

𝑛

𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0; 

lim
𝑚→∞

1

𝑚
∑𝜁𝑠𝑛 = 𝜈𝑛

𝑚

𝑠=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛0. 
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Definition 2.3. A bicomplex double sequence 𝜁 = (𝜁𝑚𝑛) is said to be regular Ces𝑎́ro null 

if for every 𝜀 > 0, there exists 𝑛0(𝜀) such that  

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 = 0

𝑚,𝑛

𝑠,𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥ 𝑛0; 

lim
𝑛→∞

1

𝑛
∑𝜁𝑚𝑡 = 0

𝑛

𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0; 

lim
𝑚→∞

1

𝑚
∑𝜁𝑠𝑛 = 0

𝑚

𝑠=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛0. 

Throughout the article, the classes of all regular Ces𝑎́ro summable and regular Ces𝑎́ro 

null is denoted by  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐0

𝑅) respectively.  

 
 

1. Main Results 

Theorem 3.1. The sequence spaces  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐0

𝑅) are linear spaces. 

Proof.  (i) Let 𝛼, 𝛽 be the scalars and {(𝜁𝑚𝑛), (𝜂𝑚𝑛)} ∈  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅).  

Then,  

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 = 𝜉

𝑚,𝑛

𝑠,𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥ 𝑛0; 
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lim
𝑛→∞

1

𝑛
∑𝜁𝑚𝑡 = 𝜉𝑚

𝑛

𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0; 

lim
𝑚→∞

1

𝑚
∑𝜁𝑠𝑛 = 𝜈𝑛

𝑚

𝑠=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛0. 

Similarly,  

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜂𝑠𝑡 = 𝜌

𝑚,𝑛

𝑠,𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ≥ 𝑛0; 

lim
𝑛→∞

1

𝑛
∑𝜂𝑚𝑡 = 𝜌𝑚

𝑛

𝑡=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0; 

lim
𝑚→∞

1

𝑚
∑𝜂𝑠𝑛 = 𝜇𝑛

𝑚

𝑠=1

, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 𝑛0. 

Then, lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ (𝛼𝜁𝑚𝑛 + 𝛽𝜂𝑚𝑛) =
𝑚,𝑛
𝑠,𝑡 lim

𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝛼𝜁𝑚𝑛
𝑚,𝑛
𝑠,𝑡 + lim

𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝛽𝜂𝑚𝑛
𝑚,𝑛
𝑠,𝑡                                                       

        = 𝛼 lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑚𝑛
𝑚,𝑛
𝑠,𝑡 + 𝛽 lim

𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜂𝑚𝑛
𝑚,𝑛
𝑠,𝑡 . 

Similarly,  

 lim
𝑛→∞

1

𝑛
∑ (𝛼𝜁𝑚𝑡 + 𝛽𝜂𝑚𝑡) =
𝑛
𝑡=1 lim

𝑛→∞

1

𝑛
∑ (𝛼𝜁𝑚𝑡) + lim

𝑛→∞

1

𝑛
∑ (𝛽𝜂𝑚𝑡)
𝑛
𝑡=1

𝑛
𝑡=1  

                                             = 𝛼 lim
𝑛→∞

1

𝑛
∑ (𝜁𝑚𝑡) + 𝛽 lim

𝑛→∞

1

𝑛
∑ (𝜂𝑚𝑡)
𝑛
𝑡=1

𝑛
𝑡=1 . 



Journal Tri. Math. Soc. Vol. 24(Dec-2022)                              ISSN 0972-1320 

 

 

 

 

 

 

 

124 
 

And,  lim
𝑚→∞

1

𝑚
∑ (𝛼𝜁𝑠𝑛 + 𝛽𝜂𝑠𝑛) =
𝑚
𝑠=1 lim

𝑚→∞

1

𝑚
∑ (𝛼𝜁𝑠𝑛) + lim

𝑚→∞

1

𝑚
∑ (𝛽𝜂𝑠𝑛)
𝑚
𝑠=1

𝑚
𝑠=1  

                                             = 𝛼 lim
𝑚→∞

1

𝑚
∑ (𝜁𝑠𝑛) + 𝛽 lim

𝑚→∞

1

𝑚
∑ (𝜂𝑚𝑡)
𝑚
𝑠=1

𝑚
𝑠=1 . 

Hence,  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is a linear space. 

(ii)   2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) follows the same.  

Theorem 3.2. The sequence spaces  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐0

𝑅) are normed spaces 

under the norm 

‖𝜁‖ = 𝑠𝑢𝑝 |
1

𝑚𝑛
∑ 𝜁𝑠𝑡

𝑚,𝑛

𝑠,𝑡=1

| , for all 𝑚, 𝑛 ∈ ℕ…… . . (1) 

Proof. Let (𝜁𝑚𝑛) ∈ 2 𝑏(𝐶𝑒𝑠, 𝑐
𝑅). 

(i)  It is obvious that  𝜁𝑚𝑛 = 0 ⟺ ‖𝜁𝑚𝑛‖ = 0. 

(ii) ‖𝜁𝑚𝑛 + 𝜂𝑚𝑛‖ =  𝑠𝑢𝑝 |
1

𝑚𝑛
∑ (𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 + 𝜂𝑠𝑡)| 

                             ≤  𝑠𝑢𝑝 |
1

𝑚𝑛
∑ (𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 )| + 𝑠𝑢𝑝 |

1

𝑚𝑛
∑ (𝜂𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 )| 

                             ≤ ‖𝜁𝑚𝑛‖ + ‖𝜂𝑚𝑛‖. 

(iii) ‖𝜆𝜁𝑚𝑛‖ =  𝑠𝑢𝑝 |
1

𝑚𝑛
∑ (𝜆𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 )| = 𝜆𝑠𝑢𝑝 |

1

𝑚𝑛
∑ (𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 )| = 𝜆‖𝜁𝑚𝑛‖. 

Hence,  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is a normed space. 
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Similarly,  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) is also a normed space.  

Theorem 3.3. The bicomplex double sequence spaces  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐

𝑅) are 

complete wr.t. normed defined in Equation (1). 

Proof. Let (𝜁𝑚𝑛
𝑙 ) ∈  2𝑏(𝐶𝑒𝑠, 𝑐

𝑅) be a Cauchy sequence. Then, for every 𝜀 > 0, there 

exists 𝑛0 = 𝑛0(𝜀) such that 

‖𝜁𝑚𝑛
𝑙 − 𝜁𝑚𝑛

𝑟 ‖ < 𝜀, for all 𝑙, 𝑟 ≥ 𝑛0. 

This implies, 𝑠𝑢𝑝 |
1

𝑚𝑛
∑ (𝜁𝑠𝑡

𝑙 − 𝜁𝑠𝑡
𝑟 )𝑚,𝑛

𝑠,𝑡=1 | < 𝜀. 

 ⇒ |
1

𝑚𝑛
∑ (𝜁𝑠𝑡

𝑙 − 𝜁𝑠𝑡
𝑟 )𝑚,𝑛

𝑠,𝑡=1 | < 𝜀 ……………………….. (2) 

 ⇒ 
1

𝑚𝑛
∑ 𝜁𝑠𝑡

𝑙𝑚,𝑛
𝑠,𝑡=1 = 𝑠𝑚𝑛

𝑙  is a Cauchy sequence in ℂ2. 

 ⇒ lim
𝑙→∞

𝑠𝑚𝑛
𝑙 = 𝑠𝑚𝑛 

When 𝑟 → ∞ in Equation (2), we get |𝑠𝑚𝑛
𝑙 − 𝑠𝑚𝑛| < 𝜀, for all 𝑙 ≥ 𝑛0. 

Now, 𝑠𝑚𝑛 = |𝑠𝑚𝑛
𝑙 − 𝑠𝑚𝑛

𝑙 + 𝑠𝑚𝑛| ≤ |𝑠𝑚𝑛
𝑙 | + |𝑠𝑚𝑛

𝑙 − 𝑠𝑚𝑛| ≤ (|𝑠𝑚𝑛
𝑙 | + 𝜀) ∈

 2𝑏(𝐶𝑒𝑠, 𝑐
𝑅). 

Hence,  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is a normed space.  

Similarly,  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) is also a normed space.  

Result 3.1. The sequence spaces  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐

𝑅) are not monotone.  
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The result follows from the example below.  

Example 3.1. Consider the bicomplex double sequence (𝜁𝑚𝑛)  defined by  

𝜁𝑚𝑛 = 3
𝑚𝑛 + 𝑗3𝑚𝑛 + 𝑖𝑗3𝑚𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ∈ ℕ. 

Then, 𝑠𝑚𝑛 =
1

𝑚𝑛
∑ 𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 = 3𝑚𝑛 + 𝑗3𝑚𝑛 + 𝑖𝑗3𝑚𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚, 𝑛 ∈ ℕ. 

 

 

This implies 
                        

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 =

𝑚,𝑛

𝑠,𝑡=1

3 + 𝑗3 + 𝑖𝑗3; 

lim
𝑛→∞

1

𝑛
∑𝜁𝑚𝑡 = 3 + 𝑗3 + 𝑖𝑗3

𝑛

𝑡=1

; 

lim
𝑚→∞

1

𝑚
∑𝜁𝑠𝑛 = 3 + 𝑗3 + 𝑖𝑗3.

𝑚

𝑠=1

 

Hence, (𝜁𝑚𝑛) ∈  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅). 

Consider (𝜂𝑚𝑛), the preimage of (𝜁𝑚𝑛) defined by 

𝜂𝑚𝑛 = {
3𝑚𝑛 + 𝑗3𝑚𝑛 + 𝑖𝑗3𝑚𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 = 𝑜𝑑𝑑

0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 = 𝑒𝑣𝑒𝑛.
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The Cesrao transformation of 𝜂𝑚𝑛 =
1

𝑚𝑛
∑ 𝜂𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1  does not converge in Pringsheim’s 

sense since, 

1

𝑚𝑛
∑ 𝜂𝑠𝑡

𝑚,𝑛

𝑠,𝑡=1

=

[
 
 
 
 
 
 
 
 3

3

2

3
3

2

2
3

2

9

5
. .

2
3

2

9

5
. .

3
3

2

3
… .

3

2. .

2
3

2

9

5
. .

2
. .

3

2. .

9

5
…

. . . .]
 
 
 
 
 
 
 
 

 

does not tend to a unique limit when 𝑚, 𝑛 → ∞.  

Also, lim
𝑛→∞

1

𝑛
∑ 𝜂𝑚𝑡
𝑛
𝑡=1  does not exist.  

This implies, (𝜂𝑚𝑛) ∉  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅).  

Hence, the sequence space   2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is not monotone.  

Similarly,  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) is also not monotone.  

Result 3.2. The sequence spaces   2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐

𝑅) are not symmetric.  

The result follows from the example below.  

Example 3.2. Consider the bicomplex double sequence (𝜁𝑚𝑛) defined by  

𝜁𝑚𝑛 = {
1, for all 𝑚 + 𝑛 = 𝑒𝑣𝑒𝑛,𝑚, 𝑛 ∈ ℕ;
0, otherwise.                  
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when 𝑛 is odd. 

And,  

𝜁𝑚𝑛 = {
1, for all 𝑚 + 𝑛 = 𝑜𝑑𝑑,𝑚, 𝑛 ∈ ℕ;
0, otherwise.                  

 

when 𝑛 is even. 

Then, the Cesaro transformation, 𝑠𝑚𝑛 =
1

𝑚𝑛
∑ 𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1  is  

1

𝑚𝑛
∑ 𝜂𝑠𝑡

𝑚,𝑛

𝑠,𝑡=1

=

[
 
 
 
 
 1 
1

2
 
2

3
 
1

2
 
3

5
 
1

2
 
4

7
1

2

1

2

1

2
 
1

2
 
1

2
 
1

2
 
1

2

⋯ ⬚
⬚

⋮ ⋱ ⋮
⬚ ⋯ ⬚]

 
 
 
 
 

. 

This implies 

lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 =

𝑚,𝑛

𝑠,𝑡=1

1

2
+ 𝑖

1

2
+ 𝑗

1

2
+ 𝑖𝑗

1

2
; 

lim
𝑛→∞

1

𝑛
∑𝜁𝑚𝑡 =

1

2
+ 𝑖

1

2
+ 𝑗

1

2
+ 𝑖𝑗

1

2

𝑛

𝑡=1

; 

lim
𝑚→∞

1

𝑚
∑𝜁𝑠𝑛 =

1

2
+ 𝑖

1

2
+ 𝑗

1

2
+ 𝑖𝑗

1

2
.

𝑚

𝑠=1

 

Hence, (𝜁𝑚𝑛) ∈  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅). 
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Consider (𝜂𝑚𝑛), the rearrangement double sequence of  (𝜁𝑚𝑛) defined by 

𝜂𝑚𝑛 = {
1, for all 𝑛 = 4𝑝, 𝑝 ∈ ℕ;
0, otherwise.                  

 

 

 

The Cesrao transformation of 𝜂𝑚𝑛 =
1

𝑚𝑛
∑ 𝜂𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1  does not converge in Pringsheim’s 

sense since, 

1

𝑚𝑛
∑ 𝜂𝑠𝑡

𝑚,𝑛

𝑠,𝑡=1

=

[
 
 
 
 
 0  0  0 

1

4
 
1

5
 
1

6
 
1

7

0  0  0 
1

4
 
1

5
 
1

6
 
1

7

⋯ ⬚
⬚

⋮ ⋱ ⋮
⬚ ⋯ ⬚]

 
 
 
 
 

 

does not tend to a unique limit when 𝑚, 𝑛 → ∞.  

Also, lim
𝑚→∞

1

𝑚
∑ 𝜂𝑠𝑛
𝑚
𝑠=1  ={

1, for all 𝑛 = 4𝑝, 𝑝 ∈ ℕ;
0, otherwise.                  

. 

But,  lim
𝑛→∞

1

𝑛
∑ 𝜂𝑚𝑡
𝑛
𝑡=1  does not converge to a unique limit.  

This implies, (𝜂𝑚𝑛) ∉  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅).  

Hence, the sequence space   2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is not symmetric.  

Similarly,  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) is also not symmetric. 
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Result 3.3. The sequence spaces  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) and  2𝑏(𝐶𝑒𝑠, 𝑐

𝑅) are not solid. 

The result follows from the example below. 

Example 3.3. Consider the bicomplex double sequence (𝜁𝑚𝑛) defined by  

𝜁𝑚𝑛 = {
1, for all 𝑛 = 8𝑝 − 4, 𝑝 ∈ ℕ;                
−1, for all 𝑛 = 8𝑝, 𝑝 ∈ ℕ;                 
0, otherwise.                                            

 

when 𝑛 is even. 

Then, lim
𝑚,𝑛→∞

1

𝑚𝑛
∑ 𝜁𝑠𝑡 =
𝑚,𝑛
𝑠,𝑡=1 0 = lim

𝑛→∞

1

𝑛
∑ 𝜁𝑚𝑡
𝑛
𝑡=1 . 

Also,  

 lim
𝑚→∞

1

𝑚
∑ 𝜁𝑠𝑛 = {

1, for all 𝑛 = 8𝑝 − 4, 𝑝 ∈ ℕ;                
−1, for all 𝑛 = 8𝑝, 𝑝 ∈ ℕ;                 
0, otherwise.                                            

𝑚
𝑠=1  

Consider the bicomplex sequence of scalars, (α𝑚𝑛) defined by 

𝛼𝑚𝑛={
1, for 𝛼14;                                              
0, otherwise.                                            

 

Then, 
1

𝑚𝑛
∑ 𝛼𝑠𝑡𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1  is given by 

1

𝑚𝑛
∑ 𝛼𝑠𝑡𝜁𝑠𝑡

𝑚,𝑛

𝑠,𝑡=1

=

[
 
 
 
 
 0 0 0 

1

4
  
1

5
   
1

6
    
1

7
       

0 0 0 
1

8
 
1

10
 
1

12
 
1

14
     

⋯ ⬚
⬚

⋮ ⋱ ⋮
⬚ ⋯ ⬚]

 
 
 
 
 

. 
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This implies 
1

𝑚𝑛
∑ 𝛼𝑠𝑡𝜁𝑠𝑡
𝑚,𝑛
𝑠,𝑡=1 doesn’t converge to a unique limit in Pringsheim’s 

sense. 

Hence, (𝛼𝑚𝑛𝜁𝑚𝑛) ∉  2𝑏(𝐶𝑒𝑠, 𝑐
𝑅). 

Hence, the sequence space   2𝑏(𝐶𝑒𝑠, 𝑐
𝑅) is not solid.  

Similarly,  2𝑏(𝐶𝑒𝑠, 𝑐0
𝑅) is also not solid. 
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Abstract: Hyperbolic number is a most important part of bi-complex number, since the 

both idempotent parts are real numbers. In this article we define D-valued p-harmonic 

convex set and D-valued p-harmonic convex function and obtain some results using D 

partial order. 

Keywords: Bi-complex number; Hyperbolic number; Partial order; Convex function.  
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1. Introduction 

Bi-complex numbers are being studied for quite a long time now. Probably Italian school 

of Segre[6] introduced the bi-complex numbers. For more details on bi-complex numbers 

and bi-complex functional analysis see [2-8]. Hyperbolic number system has been 

studied for various reasons. Many researchers developed the hyperbolic numbers. 

1.1. Bi-complex Numbers 

Segre [6] defined the bi-complex numbers as 

𝜉 = 𝑧1 + 𝑖2𝑧2 
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                                                                = 𝑥1 + 𝑖1𝑥2 + 𝑖2𝑥3 + 𝑖1𝑖2𝑥4, 

where 𝑧1, 𝑧2 ∈ 𝐶1; 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ 𝐶0 and the independent unit 𝑖1, 𝑖2 are such that 𝑖2 =

𝑖2 = −1; 𝑖1𝑖2 = 𝑖2𝑖1, where 𝐶0 and 𝐶1 are set of real and complex numbers respectively. 

The set of bi-complex numbers 𝐶2 is defined as 

𝐶2 = {𝑧1 + 𝑖2𝑧2: 𝑧1, 𝑧2 ∈ 𝐶1(𝑖1)}, 

where 𝐶1(𝑖1) = {𝑥1 + 𝑖1𝑥2, : 𝑥1, 𝑥2 ∈ 𝐶0}. 

The idempotent elements in 𝐶2 are 𝑒1 and 𝑒2, where 𝑒1 =
1+𝑖1𝑖2

2
 and 𝑒2 =

1−𝑖1𝑖2

2
 . 

Note that 𝑒1 + 𝑒2 = 1 and 𝑒1𝑒2 = 0. 

Every bi-complex number can be expressed uniquely as 

𝜉 = 𝑧1 + 𝑖2𝑧2 = 𝜇1𝑒1 + 𝜇2𝑒2,  

where 𝜇1 = 𝑧1 − 𝑖1𝑧2, 𝜇2 = 𝑧1 + 𝑖1𝑧2.  

A bi-complex number 𝜉 = 𝑧1 + 𝑖2𝑧2 is said to be singular if 𝑧1
2 + 𝑧2

2 = 0 and otherwise 

it is called non singular. The set of all singular number in 𝐶2 is denoted by 𝒪2. 

The Euclidean norm ‖⋅‖ on 𝐶2 is defined as 

 

‖𝜉‖𝐶2 = √|𝑧1|2 + |𝑧2|2; 

                                                               = √𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2; 

                                                               = √
|𝜇1|2+|𝜇2|2

2
, 

with this norm, 𝐶2 is a Banach space also 𝐶2 is a commutative algebra. 𝐶2 becomes a 

modified Banach algebra with respect to this norm in the sense that 

‖𝜉 ⋅ 𝜂‖𝐶2 ≤ √2‖𝜉‖𝐶2 ⋅ ‖𝜂‖𝐶2 . 

1.2. Hyperbolic Numbers 

The number 𝜉 of the form 𝜉 = 𝑥1 + 𝑖1𝑖2𝑥2, 𝑥1, 𝑥2 ∈ 𝐶0 is called hyperbolic number. The 

set of all hyperbolic numbers is denoted by 𝐷.  

Every hyperbolic numbers can be expressed uniquely as   

𝜉 = 𝜇1
∗𝑒1 + 𝜇2

∗𝑒2, 

where 𝜇1
∗ = 𝑥1 + 𝑥2 and 𝜇2

∗ = 𝑥2 − 𝑥1. 

Denote, 𝑒1𝐷 = {𝜇1
∗𝑒1: 𝜇1

∗𝑒1 + 𝜇2
∗𝑒2 ∈ 𝐷} and 𝑒2𝐷 = {𝜇2

∗𝑒1: 𝜇1
∗𝑒1 + 𝜇2

∗𝑒2 ∈ 𝐷}. 
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The set of all positive hyperbolic numbers 𝐷+ = {𝜇1
∗𝑒1 + 𝜇2

∗𝑒2: 𝜇1
∗, 𝜇2

∗ ≥ 0}. 

The norm ‖⋅‖ on 𝐷 is defined as 

‖𝜉‖ = √𝑥1
2 + 𝑥2

2. 

 

1.3. Partial order relation on D 

Let 𝜉, 𝜂 ∈ 𝐷, then 𝜉 is 𝐷-larger than 𝜂, we write 𝜂 ≤′ 𝜉 if 𝜉 − 𝜂 ∈ 𝐷+. 

 

Noor et al[1] introduced some new concepts of p-harmonic convex sets and p-harmonic 

convex function. In this article we have introduced p-harmonic convex sets and p-

harmonic convex function using hyperbolic numbers. 

 

Definition 1.1.  𝐴 set 𝐸 ⊂ 𝐷 is said to be 𝐷 convex set if for every 𝜉, 𝜂 ∈ 𝐷 with 

0 ≤′ 𝛼 ≤′ 1 

𝛼𝜉 + (1 − 𝛼)𝜂 ∈ 𝐷. 

Definition 1.2.  A function Υ𝐷: 𝐷 → D+ is called D-valued convex function if for every 

𝜉, 𝜂 ∈ 𝐷 with 0 ≤ 𝛼 ≤′ 1 such that 

Υ𝐷(𝛼𝜉 + (1 − 𝛼)𝜂) ≤
′ 𝛼Υ𝐷(𝜉) + (1 − 𝛼)Υ𝐷(𝜂). 

Definition 1.3.  A set 𝐸 ⊂ 𝐷 is said to be 𝐷 harmonic convex set if every 𝜉, 𝜂 ∈ 𝐷 with 

0 ≤′ 𝛼 ≤′ 1 such that 

(
𝜉𝜂

(𝛼𝜉 + (1 − 𝛼)𝜂
) ∈ 𝐸. 

 

 

Definition 1.4.  A function Υ𝐷:ℋ𝑝(⊂ 𝐷 ∖ {0}) → D+ is said to be 𝐷-valued harmonic 

convex function if 
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Υ𝐷 ((
𝜉𝜂

(𝛼𝜉 + (1 − 𝛼)𝜂
) )  ≤′ 𝛼Υ𝐷(𝜉) + (1 − 𝛼)Υ𝐷(𝜂). 

Example 1.1. Let Υ𝐷: 𝐷 ∖ {0} → 𝐷+define by 

Υ𝐷(𝜉) = ‖𝜉‖, ∀𝜉 ∈ 𝐷 ∖ {0}. 

Then Υ𝐷 is D-valued harmonic convex function. 

Definition 1.𝟓.  A set 𝐸 ⊂ 𝐷 is said to be D-valued p-harmonic convex set if every 𝜉, 𝜂 ∈
𝐷 with 0 ≤ 𝛼 ≤′ 1 such that 

(
𝜉𝑝𝜂𝑝

(𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

∈ 𝐸. 

Definition 1.6.  A function Υ𝐷: 𝐷 ∖ {0} → D+ is said to be 𝐷-valued p-harmonic convex 

function if 

Υ𝐷 ((
𝜉𝑝𝜂𝑝

(𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

) ≤′ 𝛼Υ𝐷(𝜉) + (1 − 𝛼)Υ𝐷(𝜂). 

2. Main Result 

Theorem 2.1.  Let E be a D-valued p-harmonic convex set. If Υ𝐷𝑖  : E → 𝐷+, (i = 1, 2, 3, ..., 

m) are D-valued p-harmonic convex functions. Then the function 

𝜐 =∑𝜁𝑖Υ𝐷𝑖

𝑚

𝑖=1

, 𝜁𝑖 ≥
′ 0 

is D-valued p-harmonic convex functions. 

 

Proof.  
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𝜐 ((
𝜉𝑝𝜂𝑝

(𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

) =∑𝜉𝑖Υ𝐷𝑖 ((
𝜉𝑝𝜂𝑝

(𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

)

𝑚

𝑖=1

 

                                                   ≤′ ∑(𝜁𝑖(𝛼Υ𝐷𝑖(𝜉) + (1 − 𝛼)Υ𝐷𝑖(𝜂)

𝑚

𝑖=1

))  

                                                    = ∑𝜁𝑖𝛼Υ𝐷𝑖(𝜉)

𝑚

𝑖=1

+∑ 𝜁𝑖(1 − 𝛼)Υ𝐷𝑖(𝜂)

𝑚

𝑖=1

 

                                                     = 𝛼∑𝜁𝑖Υ𝐷𝑖(𝜉)

𝑚

𝑖=1

+ (1 − 𝛼)∑𝜁𝑖Υ𝐷𝑖(𝜂)

𝑚

𝑖=1

 

                        = 𝛼𝜐(𝜉) + (1 − 𝛼)𝜐(𝜂). 

Hence, 𝜐 is D-valued p-harmonic convex functions. 

Theorem 2.2. Let E be a D-valued p-harmonic convex set. If the function  Υ𝐷
1: 𝐸 → 𝐷+  is D-

valued p-harmonic convex functions and Υ𝐷
2: 𝐸 → 𝐷+ is a D-valued linear function, then  Υ𝐷

1 ∘

Υ𝐷
2 is a D-valued p-harmonic convex functions. 

Theorem 2.3. Let Υ𝐷: 𝐷 ∖ {0} → 𝐷+be a D-valued p-harmonic convex function and let 

Υ𝐷(𝜉) = Υ′(𝜉𝑒1)𝑒1 + Υ
′′(𝜉𝑒2)𝑒2. 

Then Υ′(𝜉𝑒1) and Υ′′(𝜉𝑒2) are real valued 𝑝-harmonic convex function, where Υ′: 𝑒1D ∖
{0} → 𝐶0 and Υ′′: 𝑒2D ∖ {0} → 𝐶0. 

Proof. Let 𝑣1
′ = 𝜉𝑒1 ∈ 𝑒1D ∖ {0} and 𝑣2

′ = 𝜉𝑒2 ∈ 𝑒2D ∖ {0}. Consider 0 ≤ 𝛼1 ≤ 1 and 

0 ≤ 𝛼2 ≤ 1 such that 0 ≤ 𝛼 ≤ 1, where 𝜆 = 𝜆1𝑒1 + 𝜆2𝑒2. Since, Υ𝐷: 𝐷 ∖ {0} → 𝐷+be a 

𝐷-valued p-harmonic convex function so 

Υ𝐷 ((
𝜉𝑝𝜂𝑝

𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

) ≤′ 𝛼Υ𝐷(𝜉) + (1 − 𝛼)Υ𝐷(𝜂) 
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 ⟹ Υ′((
𝜉𝑝𝜂𝑝𝑒1

𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

)𝑒1 + Υ
′′ ((

𝜉𝑝𝜂𝑝𝑒2
𝛼1𝜉𝑝 + (1 − 𝛼)𝜂𝑝

)

1
𝑝

)𝑒2 

≤ 𝛼{Υ′(𝜉𝑒1)𝑒1 + Υ
′′(𝜉𝑒2)𝑒2} + (1 − 𝛼){Υ

′(𝜂𝑒1)𝑒1 + Υ
′′(𝜂𝑒2)𝑒2} 

 

Multiply by 𝑒1 in the above equation, we get 

Υ′ ((
𝜉𝑝𝜂𝑝𝑒1

𝛼𝜉𝑝+(1−𝛼)𝜂𝑝
 
1

𝑝)) 𝑒1 ≤
′ 𝛼Υ′(𝜉𝑒1)𝑒1 + (1 − 𝛼)Υ

′(𝜂𝑒1)𝑒1                        (2.1) 

From the L.H.S of the above equation, we get 

Υ′ ((
𝜉𝑝𝜂𝑝𝑒1

𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

)𝑒1

= Υ′ ((
𝜉𝑝𝜂𝑝𝑒1

(𝛼1𝑒1 + 𝛼2𝑒2)𝜉
𝑝 + (1 − 𝛼1𝑒1 − 𝛼2𝑒2)𝜂

𝑝
)

1
𝑝

)𝑒1                                      

= Υ′ ((
𝜉𝑝𝜂𝑝𝑒1𝑒1

{𝑒1(𝛼1𝑒1 + 𝛼2𝑒2)𝜉𝑝 + (1 − 𝛼1𝑒1 − 𝛼2𝑒2)𝜂𝑝}
)

1
𝑝

)𝑒1  

= Υ′ ((
𝜉𝑝𝜂𝑝𝑒1𝑒1

𝛼1𝑒1𝜉𝑝 + (1 − 𝛼1𝑒1)𝜂𝑝
)

1
𝑝

)𝑒1               

= Υ′((
𝜉𝑝𝜂𝑝𝑒1

𝑝𝑒1
𝑝

𝛼1𝑒1
𝑝𝜉𝑝 + (1 − 𝛼1)𝑒1

𝑝𝜂𝑝
)

1
𝑝

)𝑒1            
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                  = Υ′((
𝑣1
′𝑝𝑣2

′𝑝

𝛼1𝑣1
′𝑝 + (1 − 𝛼1)𝑣2

′𝑝)

1
𝑝

)𝑒1.                           (2.2) 

 

Similarly from the R.H.S of (2.1), we get 

𝛼Υ′(𝜉𝑒1)𝑒1 + (1 − 𝛼)Υ
′(𝜂𝑒1)𝑒1 

= 𝛼1Υ
′(𝜉𝑒1)𝑒1 + (1 − 𝛼1)Υ

′(𝜂𝑒1)𝑒1 

                      = 𝛼1Υ
′(𝑣1

′) + (1 − 𝛼1)Υ
′(𝑣2

′ )𝑒1.                        (2.3) 

 

From (2.2) and (2.3), we get 

Υ′ ((
𝑣1
′𝑝
𝑣2
′𝑝

𝛼1𝑣1
′𝑝
+(1−𝛼1)𝑣2

′𝑝)

1

𝑝

)𝑒1 ≤
′ 𝛼1Υ

′(𝑣1
′) + (1 − 𝛼1)Υ

′(𝑣2
′ )𝑒1.                 (2.4) 

Which implies that 

Υ′ ((
𝑣1
′𝑝𝑣2

′𝑝

𝛼1𝑣1
′𝑝 + (1 − 𝛼1)𝑣2

′𝑝)

1
𝑝

) ≤ 𝛼1Υ
′(𝑣1

′) + (1 − 𝛼1)Υ
′(𝑣2

′ ). 

Hence, Υ′(𝜉𝑒1) is real valued p-harmonic convex function, similarly we can proves the 

other parts. 

Theorem 2.4.  Let Υ𝐷
′ : 𝑒1𝐷 → 𝐶0

+and Υ𝐷
′′: 𝑒2𝐷 → 𝐶0

+be any two real valued p-harmonic 

convex functions, then the sum Υ𝐷
′ (𝑒1𝜉)𝑒1 + Υ𝐷

′′(𝑒2𝜉)𝑒2 is a D-valued 𝑝 - harmonic 

convex function. 
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Proof. Let 𝜉, 𝜂 ∈ 𝐷. Let 𝑣1
′ = 𝑒1𝜉, 𝑣2

′ = 𝑒1𝜂, 𝑣1
′′ = 𝑒2𝜉 and 𝑣2

′′ = 𝑒2𝜂. Then 𝑣1
′ , 𝑣2

′ ∈
𝑒1𝐷 and 𝑒2𝜉, 𝑒2𝜂 ∈ 𝑒2𝐷. Further, let us assume that 0 ≤ 𝛼1 ≤ 1 and 0 ≤ 𝛼2 ≤ 1 be such 

that 0 ≤′ 𝛼 ≤′ 1, where 𝛼 = 𝛼1𝑒1 + 𝛼2𝑒2. Since Υ𝐷
′  and Υ𝐷

′′ are real valued p-harmonic 

convex function, we have 

Υ′((
𝑣1
′𝑝𝑣2

′𝑝

𝛼1𝑣1
′𝑝 + (1 − 𝛼1)𝑣2

′𝑝)

1
𝑝

) ≤ 𝛼1Υ
′(𝑣1

′) + (1 − 𝛼1)Υ
′(𝑣2

′ )                                 (2.5) 

Υ′′ ((
𝑣1
′′𝑝𝑣2

′′𝑝

𝛼1𝑣1
′′𝑝 + (1 − 𝛼1)𝑣2

′′𝑝)

1
𝑝

) ≤ 𝛼1Υ
′′(𝑣1

′′) + (1 − 𝛼1)Υ
′′(𝑣2

′′).                         (2.6) 

Now, 

Υ′((
𝑣1
′𝑝𝑣2

′𝑝

𝛼1𝑣1
′𝑝 + (1 − 𝛼1)𝑣2

′𝑝)

1
𝑝

)                                           

= Υ′((
𝑣1
′𝑝
𝑣2
′ 𝑝𝑒1

(𝛼1𝑒1 + 𝛼2𝑒2)𝑒1𝑣1
′𝑝 + (𝑒1 − 𝛼1𝑒1 − 𝛼2𝑒2)𝑒1𝑣2

′ 𝑝
)

1
𝑝

) 

= Υ′ ((
𝑣1
′𝑝𝑣2

′𝑝𝑒1

𝛼𝑒1𝑣1
′𝑝 + (1 − 𝛼)𝑒1𝑣2

′ 𝑝
)

1
𝑝

)                                 (2.7) 

 

 

Similarly, 
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Υ′′ ((
𝑣1
′′𝑝
𝑣2
′′𝑝

𝛼1𝑣1
′′𝑝
+(1−𝛼1)𝑣2

′′𝑝)

1

𝑝

) = Υ′′ ((
𝑣1
′′𝑝
𝑣2
′′𝑝

𝛼𝑣1
′′𝑝
+(1−𝛼)𝑣2

′′𝑝)

1

𝑝

)                                    (2.8) 

Again, 

{𝛼1Υ
′(𝑣1

′) + (1 − 𝛼1)Υ
′(𝑣2

′ )}𝑒1 = {𝛼Υ′(𝑣1
′) + (1 − 𝛼)Υ′(𝑣2

′ )}𝑒1                         (2.9) 

{𝛼1Υ
′′(𝑣1

′′) + (1 − 𝛼1)Υ
′′(𝑣2

′′)}𝑒2 = {𝛼Υ
′′(𝑣1

′′) + (1 − 𝛼)Υ′′(𝑣2
′′)}𝑒2               (2.10) 

Multiplying the equations (2.5), (2.6) by 𝑒1, 𝑒2 and then adding we get 

Υ′((
𝑣1
′𝑝𝑣2

′

𝛼1𝑣1
′𝑝 + (1 − 𝛼1)𝑣2

′
)

1
𝑝

)𝑒1 + Υ
′′ ((

𝑣1
′′𝑝𝑣2

′′𝑝

𝛼1𝑣1
′′𝑝 + (1 − 𝛼1)𝑣2

′′𝑝)

1
𝑝

)𝑒2 

≤′  [𝛼1Υ
′(𝑣1

′) + (1 − 𝛼1)Υ
′(𝑣2

′ )]e1 + [𝛼1Υ
′′(𝑣1

′′) + (1 − 𝛼1)Υ
′′(𝑣2

′′)]𝑒2. 

Using the equations (2.7), (2.8), (2.9) and (2.10), the above inequality becomes 

Υ′ ((
𝑣1
′𝑝𝑣2

′𝑝

𝛼𝑣1
′𝑝 + (1 − 𝛼)𝑣2

′
)

1
𝑝

)𝑒1 + Υ
′′ ((

𝑣1
′′𝑣2

′′𝑝

𝛼𝑣1
′′𝑝 + (1 − 𝛼)𝑣2

′′𝑝)

1
𝑝

)𝑒2 ≤
′  

[𝛼Υ′(𝑣1
′) + (1 − 𝛼)Υ′(𝑣2

′ )]𝑒1 + [𝛼Υ
′′(𝑣1

′′) + (1 − 𝛼)Υ′′(𝑣2
′′)]𝑒2 

⇒ Υ′ ((
𝜉𝑝𝜂𝑝𝑒1

𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

)𝑒1 + Υ
′′ ((

𝜉𝑝𝜂𝑝𝑒2
𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝

)

1
𝑝

)𝑒2 ≤
′ 

                         [𝛼Υ′(𝜉𝑒1) + (1 − 𝛼)Υ
′(𝜂𝑒1)]𝑒1 + [𝛼Υ

′′(𝜉𝑒2) + (1 − 𝛼)Υ
′′(𝜂)]𝑒2           

⇒ (Υ′(𝑒1. )𝑒1 + Υ
′′(𝑒2. )𝑒2)((

𝜉𝑝𝜂𝑝

𝛼𝜉𝑝 + (1 − 𝛼)𝜂𝑝
)

1
𝑝

) ≤′                           
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                        𝛼(Υ′(𝑒1. )𝑒1 + Υ
′′(𝑒2. )𝑒2)(𝜉) + (1 − 𝛼)(Υ

′(𝑒1. )𝑒1 + Υ
′′(𝑒2. )𝑒2)(𝜂). 

Hence, Υ𝐷
′ (𝑒1𝜉)𝑒1 + Υ𝐷

′′(𝑒2𝜉)𝑒2 is a D-valued 𝑝 - harmonic convex function. 
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