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Abstract 

An analysis has been arranged to examine the peristaltic transport of non-Newtonian fluid in 

a vertical asymmetric channel. The fluid in the channel is assumed electrically conducted 

through a porous medium and a uniform magnetic field is applied transversely to the 

direction of the flow. Simultaneous impacts of heat and mass transfer with Soret and Dufour 

effects are considered. A Casson rheological model is used to characterize the non-Newtonian 

behavior of the flow. The equations governing the fluid flow are investigated in a wave frame 

of reference with a velocity of the wave. Analytic solution is carried out under the 

assumptions of long wave length and small Reynolds number. The expressions for stream 

function, temperature, concentration and heat transfer coefficient are obtained. The 

transformed equations have also been solved numerically by bvp4c function from MATLAB. 

Effects of various parameters on flow characteristics have been discussed with the help of 2D 

and 3D graphs. 

 

Keywords: Magnetic field, Heat transfer, Soret number, Porous channel. 

 

1. Introduction: 

 

In recent years the peristaltic transport in channel has practical interest due to wide 

applications.  Peristaltic transport is a form of material transport induced by a progressive 

wave of area contraction and expansion along the length of a distensible tube, mixing and 

transporting the fluid in the direction of the wave propagation.  Physiological fluids in animal 

and human bodies are, in general, pumped using this principle. Peristaltic transport occurs 

widely in the functioning of ureter, food mixing and crime movement in intestine, movement 

of eggs in fallopian tube, circulation of blood in blood vessel. Latham [1] and Shapiro et al. 

[2] made early effort regarding peristaltic mechanism of viscous fluid. After that, this topic 

has been examined for both Newtonian and non-Newtonian fluids [3-10].  Again the porous 

medium plays an important role in the study of transport process in fluid dynamics, industrial 

and engineering fields. Fluid movement through a porous medium is widely applicable in 

mailto:marufek@gmail.com
mailto:samad@du.ac.bd
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lungs, kidneys, bile duct, gall bladder with stones, small blood vessels. In our body, 

distribution of fatty cholesterol, blood clots in coronary artery, functions of organs are 

considers as porous medium [11]. Elshehawey et al. [12] discussed the Peristaltic transport in 

an asymmetric channel through a porous medium. Elangovan and Selvaraj [13] studied MHD 

peristaltic flow of blood through porous medium with slip effect in the presence of body 

acceleration.  

 

This mechanism with heat transfer is also used in many biomedical and industry appliances 

such as finger pump, roller pump, heart-lung machine, blood pump machine and dialysis 

machine. Heat transfer is also significant in the treatment of cancerous tissues, evaluating 

skin burns, food processing, radiation between surface and its surrounding environments [14]. 

Srinivas and Gayathri [15] studied peristaltic transport of Newtonian fluid in a vertical 

asymmetric channel with heat transfer and porous channel. Mass transfer in peristaltic flow is 

another vital phenomenon in physiology and industry. It occurs during chemical breakdown 

of food, distillation process and combustion process [16,17]. In joint heat and mass transfer 

situations, thermal energy flux resulting from concentration gradients is named diffusion-

thermal effect (Dufour), while thermo-diffusion effect (Soret) occurs due to mass fluxes by 

temperature gradient.  

 

Most of the industrial and physiological fluids (such as blood, food bolus, chyme) are non-

Newtonian in nature. So, peristaltic transport of non-Newtonian fluids has been a vital topic 

for the researchers. These non-Newtonian fluids possess both viscous and elastic properties.  

But there is not a single constitute equation that can explain the flow properties of these 

fluids. Due to complex structure of fluids, several models (power-law fluid, Casson model, 

Couple stress fluid, micropolar fluid) have been proposed [11]. Casson model was introduced 

by Casson [18]. Human blood, honey, jelly can be presented by Casson’s model [19]. To the 

best of author knowledge the idea of Casson fluid in peristaltic literature have not been 

discussed yet. For this reason, we have analyzed the heat and mass transfer on peristaltic 

transport of Casson fluid in a vertical asymmetric channel. Soret and Dufour effects are also 

accounted. The problem is first formulated and then solved both analytically and numerically. 

Influences of different important parameters on flow characteristics are presented and 

discussed.  

 

2.  Mathematical Modeling: 

Consider the heat and mass transfer effects in the flow of an incompressible and electrically 

conducting non-Newtonian Casson fluid in a two dimensional asymmetric vertical channel. 

Soret and Dufour effects are also present. Here  -axis is taken along the length of the channel 

and  -axis is normal to it. The channel walls    and    are maintained at constant 

temperature    and    and constant concentration    and    respectively. A uniform 
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magnetic field    is applied in  -direction. Here the induced magnetic field is not considered 

due to small Reynolds numbers. Again, the asymmetry in the channel is produced by 

selecting the peristaltic wave propagating with constant speed   along the walls defined by 

 
Fig.1. Physical model of the problem 

 
             {

  

 
(    )}

              {
  

 
(    )   }

}  (1) 

where       denote the waves amplitudes,       is the channel width,   is the wave 

length,   is the time,   is the velocity of propagation and   is the phase difference (    
 ), in which     corresponds to symmetric channel with waves out of phase and     

corresponds to waves in phase.  

 

The basic laws which governs the present model are 

    ̅      (2) 

  
  ̅

  
         ̅   ̅   ̅  

 

  
 ̅      (    )      (    )  (3) 

    
  

  
            

   

  
     (4) 

 
  

  
      

   

  
     (5) 

where   ̅ is the fluid velocity vector,   is the pressure,   is the viscosity,   is the density,   ̅is 

the current density,  ̅ is the magnetic field,  ̅   ̅ is the Lorentz force,    is the acceleration 

due to gravity,    is the thermal expansion coefficient,    is the concentration expansion 

coefficient,    is specific heat at constant pressure,   is the thermal conductivity,   is the 
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heat generation,    radiative heat flux,   is the mass diffusivity,    is the thermal diffusion  

ratio,    is the concentration susceptibility,    is the mean temperature. 

The constitute equation for Casson [9,10] fluid is  

      (   
  

√  
)      (6) 

where     
 

 
(

   

   
 

   

   
)  is the (   ) th component of deformation rate,     is the (   ) th 

component of the stress tensor,   is the product of the component of deformation rate with 

itself,  and    is the plastic dynamic viscosity. The yield stress    is expressed as    
  √  

 
, 

where   Casson fluid parameter. For non-Newtonian Casson fluid flow      
  

√  
  which 

gives     (  
 

 
), where   

  

 
 is the kinematic viscosity for Casson fluid. Again the 

yield stress      for Newtonian case. 

 

In the fixed frame, the governing equations for peristaltic motion of Casson fluid through 

porous medium in a vertical channel are  
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The corresponding boundary conditions are  

 
                                      

                                     
}  (12) 

The radiative heat flux    in  -direction is negligible compared to  -direction. Using 

Rosseland approximation for thermal radiation,    is defined by  

     
      

 

   

  

  
  (13) 
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Where,    is the Stefan-Boltzmann constant and    is the absorption coefficient.  

The coordinates, velocity, pressure, temperature and concentration in the fixed frame (   ) 

and wave frame (   ) are related by the following expression  

 
                      (   )   (     )

 ̅(   )   (     )  ̅(   )   (     ) 
} (14) 

Where,        ̅  and  ̅  are velocity components, pressure, temperature and concentration 

respectively in wave frame. 

Now we introduce the following dimensionless quantities 
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} (15) 

The governing equations ( )  (  ) under the assumptions of long wave length and low 

Reynolds number in terms of stream function   (dropping the das symbols) become 
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  )          (16) 

 
  

  
   (17) 

 (    )                 (18) 

               (19) 

The dimensionless boundary conditions become 

 
  

 

 
       

   

   
                                   

   
 

 
    

   

  
                                  

}  (20) 

where    √
 

  
     is the magnetic field parameter,   

  

  
  is the permeability parameter, 

  is the volume flow rate in the wave frame,   
  √  

  
 is the Casson fluid parameter, 

   
   ( ̅   ̅ )  

 

  
 is the temperature Grashof number,    

   (  ̅  ̅ )  
 

  
 is the concentration 

Grashof number,    
    

 
 is the Prandtl number,    

    
   

     is the radiation parameter, 

   
   

 

 ( ̅   ̅ )
 is the heat generation parameter,    

   (  ̅   ̅)

      ( ̅   ̅ )
 is the Dufour number, 

   
 

 
 is the Schmidt number and    

   ( ̅   ̅ )

   (  ̅   ̅)
 is the Soret number. 
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3. Analytic Solution: 

 

Equation (17) gives that    ( ). Eliminating the pressure terms from (16) we get 

 
   

         

    
 

   
(         )    (21) 

Solving equations (18) and (19) with the boundary conditions (20), the temperature and 

concentration are obtained as 

    
   

 
        (22) 

        
  

 
        (23) 

Using the above solutions and boundary conditions (20) in (21), we get the stream function as 

             
      

       
     

  (24) 

where the constants involved in the solutions are given in the appendix. 

 

The dimensionless mean flow rate    in the laboratory frame is related to the dimensionless 

mean flow rate   in the wave frame by  

          (25) 

in which 

   ∫    
  

  
 (26) 

Also note the    and    represent the dimensionless forms of the peristaltic walls 

 
              

          (     )
} (27) 

Again the heat transfer coefficient at the right wall (    ) is 

        
     (     )    (   ) (28) 

 

 

4. Numerical Solution: 

We have also solved the transformed equations by numerical technique bvp4c built in 

function of MATLAB. The function is strong and beneficial to calculate the solution of 

model BVPs. In particular, bvp4c is a finite difference code and it provides a   -continuous 

solution which is fourth order accurate uniformly in a given interval. To find numerical result 

the following parameter values have been used:       ,     ,       ,     ,    
   ,   ,     ,   ,                           ,                 
          , unless otherwise specified. The value of Prandtl number for human blood is 

      [7]. So    is kept 21 throughout the study. The effect of various parameters, such as 

magnetic field parameter ( ), Casson fluid parameter ( ), permeability parameter ( ), flow 

rate ( ), heat generation parameter (  ), radiation parameter (  ), Dufour number (  ), 
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Soret number (  ) and Schmidt number (  ) are displayed using 2D and 3D plots. These 

plots are sketched to understand and explain the varying activities of model parameters in a 

better way. 

 

  
Fig.2. Velocity profiles for different   (a) 2D and (b) 3D 

  
Fig.3. Velocity profiles for different   (a) 2D and (b) 3D 

  
Fig.4. Velocity profiles for different   (a) 2D and (b) 3D 
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Fig.5. Velocity profiles for different   (a) 2D and (b) 3D 

 

  
Fig.6. Velocity profiles for different    (a) 2D and (b) 3D 

  
Fig.7. Velocity profiles for different    (a) 2D and (b) 3D 
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Fig.8. Velocity profiles for different    (a) 2D and (b) 3D 

 

5. Results and Discussions: 

 

The behavior of magnetic field parameter   on velocity component   is plotted in Fig.2. 

Here we see that the velocity profile is parabolic in nature. It is clear that when   is 

increased,   decreases near the centre of the channel. The applications of applied magnetic 

field to an electrically conduction flow give rise to a resistive force (called Lorenz force). 

This force has the tendency to slow down the motion of the fluid. For this reason there is a 

decreasing impact on velocity field. Fig.3 shows that velocity is increased for large 

permeability parameter  . The effect of Casson fluid parameter   on velocity is displayed in 

Fig.4. Large   means a decrease in yield stress. This effectively accelerates the fluid flow. 

Fig.5 shows that the velocity profile increased with an increase in flow rate  . The effect of 

temperature Grashof number    is observed in Fig.6. It is clear that the axial velocity 

increases at the left wall while a reserve behavior is seen at the right wall when    increases. 

In this case the fact is that the buoyancy force gives rise to flow. The force has a tendency to 

increase the flow of the fluid which results in increasing the velocity profiles at the left wall. 

Similar property follows for concentration Grashof number    as seen in Fig.7. The effect of 

radiation parameter    on velocity is sketched in Fig. 8. It viewed that the magnitude of 

velocity profile enlarges at the central part of the channel with large   . 
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Fig.9. Temperature profiles for different    (a) 2D and (b) 3D 

 
 

Fig.10. Temperature profiles for different    (a) 2D and (b) 3D 

  
Fig.11. Temperature profiles for different    (a) 2D and (b) 3D 
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Fig.12. Temperature profiles for different    (a) 2D and (b) 3D 

  
Fig.13. Concentration profiles for different    (a) 2D and (b) 3D 

  
Fig.14. Concentration profiles for different    (a) 2D and (b) 3D 
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Fig.15. Concentration profiles for different    (a) 2D and (b) 3D 

  
Fig.16. Concentration profiles for different    (a) 2D and (b) 3D 

 

The effect of heat generation parameter    is illustrated in Fig.9. We know that heat 

generation is nothing but the conversion of one form of energy into thermal energy inside the 

fluid. The temperature of the fluid increases during this process. The behavior of Prandtl 

number    on dimensionless temperature profiles has been presented in the Fig.10. The 

temperature field enhances when we increase   . We know that Prandtl number is the ratio of 

momentum diffusivity to thermal diffusivity and it is the function of fluid properties not the 

flow situations. The thickness of both velocity and thermal boundary layer is same when 

    . Again the temperature increases due to increase in Dufour number    as seen in 

Fig.11. The influence of radiation parameter    on temperature field is given in Fig.12. The 

higher values of    imply higher surface heat flux and thus it decreases the temperature 

within the channel. 
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Fig.17. Heat transfer coefficient for different    (a) 2D and (b) 3D 

  
Fig.18. Heat transfer coefficient for different    (a) 2D and (b) 3D 

  
Fig.19. Heat transfer coefficient for different    (a) 2D and (b) 3D 

 

Fig.13 shows that radiation parameter    has increasing effect on concentration field. On the 

other hand concentration decreases for increasing   . In this situation increase in 

concentration is slow and less as seen in Fig.14. The concentration profiles for different value 

of Schmidt number    is sketched in Fig.15.    is the ratio of momentum diffusivity to mass 

diffusivity. Here the profile decreases with an increase in   . The effect of Soret number    

on concentration profiles is displayed in Fig.16. It is mentioned that concentration profile 

decreases with increasing   . 
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The effects of on heat transfer coefficient    at upper wall (    ) are plotted in Fig. 17- 

Fig.19. Here     has oscillatory property due to peristaltic. It is noticed that the absolute 

values of    increases with increase of    and   . On the other hand, increasing the radiation 

parameter    decreases the heat transfer coefficient. 

 

In order to verify the accuracy of numerical results, the present study is compared with the 

previous study of Srinivas & Gayathri [15]. For the purpose of comparison, both the studies 

have been brought to the same stage by considering equal parameters (Newtonian case). 

These comparisons are given in Fig.20, which are found in very good agreement. 

 

 
Fig.20. Comparison of velocity profiles (Newtonian Case) 

 

6. Concluding Remarks: 

Soret and Dufour effects on the peristaltic transport of Casson fluid in a vertical channel are 

discussed in this study. Both analytic and numerical solutions are obtained. The impacts of 

different parameters on flow characteristics are shown graphically. The main findings of the 

study are 

 

1. Velocity field increases for             and    but decreases for  .  

2. An increase in       and   result an increase in temperature profiles. But opposite 

property is noticed for   .  

3. Soret number    plays a role on concentration. 

4. Absolute value of heat transfer coefficient increases for large    and   .  
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Abstract 

In this article, by using definition of -statistical convergence which was defined by Çakallı 

[11] we introduce the concepts of statistical convergence with the fractional order and 

strongly summable sequences with the fractional order. Also, we establish some 

inclusion relations between the concepts of statistical convergence and strong 

summability. 
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summability. 
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1. INTRODUCTION 
 

In 1951, Steinhaus [34] and Fast [19] introduced the notion of statistical convergence and later 
in 1959, Schoenberg [33] reintroduced independently. Altinok et al. [2], Aral and Günal [5], 
Caserta et al. [8], Çakallı ([9],[10]), Connor [14], Çolak [13], Et et al. ([12],[17]), Fridy [20], 
Fridy and Orhan [21], Gadjiev and Orhan [22], Isık et al. ([23],[24],[25]), Kolk [28], Mursaleen 
[29], Salat [31] and many others investigated some arguments related to this notion. 

 

ρ

Δρ
α −

Δρ
α −

Δρ
α − Δρ

α −
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The opinion of statistical convergence depends on the density of subsets of the natural set ℕ. 
We say that the  is the density of a subset  of ℕ if the following limit exists such that 

 

 

where  is the characteristic function of . It is clear that any finite subset of ℕ  has zero 

natural density and . We say that the sequence  is statistically 

convergent to  if for every   

𝛿({𝑘 ∈ ℕ: |𝑥! − 𝑙| ≥ 𝜀}) = 0 

 

By  we will denote the set of all statistically convergent sequences. 

 

Difference sequence spaces was defined by Kızmaz [27] and the concept was generalized by 
Et et al. ([15],[18]) as follows: 

 

where  is any sequence space, mÎ 	ℕ,      

 and so  . 

 

If , then there exists one and only one sequence  such that  

  and  

 

	
δ E( ) 	E

		
δ E( ) = lim

n→∞

1
n k=1

n

∑χE k( ) ,

	χE 	E

		δ Ec( ) =1−δ E( ) 	
x = xk( )

 ℓ 	ε >0,

	S

		Δ
m X( ) = x = xk( ) : Δmxk( )∈X{ } ,

	X 		Δ
0x = xk( ) , 		Δx = xk − xk+1( ) , 	Δ

mx = Δmxk( ) =

		 Δ
m−1xk − Δ

m−1xk+1( ) 		
Δmxk = v=0

m∑ −1( )v m
v( )xk+v

	
x∈Δm X( ) 		y = ( yk )∈X

	yk = Δmxk
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                       (1) 

𝑦"#$ = 𝑦%#$ = ⋯𝑦& = 0 

for sufficiently large , for instance  After then some properties of difference 
sequence spaces have been studied in ([1],[3],[4],[16],[18],[26],[32],[35],[36],[37]). 

 

By , we denote the Gamma function of a real number  and . By 
the definition, it can be expressed as an improper integral as:  

 

From the definition, it is observed that: 

(i) For any natural number    

(ii) For any real number  and   

(iii) For particular cases, we have   

For a proper fraction  we define a fractional difference operator  defined by  

                                                                      (2) 

In particular, we have    

   

   

 . 

		
xk =

v=1

k−m

∑ −1( )m k− v −1
m−1

⎛

⎝⎜
⎞

⎠⎟
yv =

v=1

k

∑ −1( )m k+m− v −1
m−1

⎛

⎝⎜
⎞

⎠⎟
yv−m ,

	k 		k >2m.

		Γ(r) 	r 		r∉{0,−1,−2,−3,...}

		Γ(r)= 0

∞

∫ e−tt r−1dt .

		n, 		Γ(n+1)= n!,

	n 		n∉{0,−1,−2,−3,...}, Γ(n+1)= nΓ(n),

	Γ(1)= Γ(2)=1,Γ(3)=2!,Γ(4)=3!,....

	α , 		Δ
α : w→w

		
Δα xk( ) =

i=0

∞

∑(−1)i
Γ α +1( )

i!Γ α − i+1( ) xk+i .

		 Δ
1
2xk = xk −

1
2 xk+1 −

1
8 xk+2 −

1
16 xk+3 −

5
128 xk+4 −

7
256 xk+5 −

21
1024 xk+6!

		 Δ
−12xk = xk +

1
2 xk+1 +

3
8 xk+2 +

5
16 xk+3 +

35
128 xk+4 +

63
256 xk+5 +

231
1024 xk+6!

		 Δ
1
3xk = xk −

1
3 xk+1 −

1
9 xk+2 −

5
81 xk+3 −

10
243 xk+4 −

22
729 xk+5 −

154
6561 xk+6!

		 Δ
2
3xk = xk −

2
3 xk+1 −

1
9 xk+2 −

4
81 xk+3 −

7
243 xk+4 −

14
729 xk+5 −

91
6561 xk+6!
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Without loss of generality, we assume throughout that the series defined in (2) is convergent. 
Moreover, if  is a positive integer, then the infinite sum defined in (2) reduces to a finite sum 
i.e.,  

 

In fact, this operator generalized the difference operator introduced by Et and Çolak [15] and 

in this case we write  𝑚 ∈ ℝ instead of  (𝛼 ∈ ℝ). 

Recently, using fractional operator (fractional order of 	𝛼 ∈ ℝ ) Baliarsingh et al. 

([6],[7],[30]) defined the sequence space  such as 

, where  is any sequence space. 

The concept of statistical convergence was defined by Çakallı [11]. A sequence  

is called statistically convergent to  if  

 

for each  where  is a non-decreasing sequence of positive real numbers tending 

to  such that  and  for each positive integer 

  

 

2. MAIN RESULTS 
 
In this section we give the main results of this article. Now we begin two new definitions. 

α

		i=0

α

∑(−1)i
Γ α +1( )

i!Γ α − i+1( ) xk+i .

	
Δm X( ) 	

Δα X( )
Δα 	α ,

	
Δα X( ) 		Δ

α X( ) = x = xk( ) : Δα xk( )∈X{ }
	X

ρ −
	
x = xk( )

ρ −  ℓ

		 
lim
n→∞

1
ρn
|{k ≤n :|xk − ℓ|≥ ε }|=0

	ε >0, 	
ρ = ρn( )

∞ 		limsupn
ρn
n <∞, Δρn =O 1( ) 		Δρn = ρn+1 − ρn

		n.
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Definition 2.1 Let  be a proper fraction and , then a sequence  is said to 

be strongly summable to  if  

 

for each  where and afterwards  is a non-decreasing sequence of positive real 

numbers tending to  such that  and  for each 

positive integer  We denote the set of all strongly summable sequences by 

  and write  or . If  then the 

sequence space  reduces to the sequence space . If  then we write  

instead of . In case of  we write  instead of   

 

Definition 2.2 Let  be a proper fraction, then a sequence  is called 

statistically convergent to  if  

 

for each . In this case we write  or . We denote the set 

of all statistically convergent sequences by . If  for all	𝑛 ∈ ℕ, 

statistical convergence is coincides with statistical convergence which was defined and 
studied Baliarsingh et al. [7]. 

 

α 		0< p<∞ 	
x = xk( )

	
Δρ

α p( )−  ℓ

		 
lim
n→∞

1
ρn k=1

n

∑|Δα xk − ℓ|p=0,

	ε >0, 	
ρ = ρn( )

∞ 		limsupn
ρn
n <∞, Δρn =O 1( ) 		Δρn = ρn+1 − ρn

		n. 	
Δρ

α p( )−
	
Δρ

α p( ) 		 limk→∞ xk = ℓ Δρ
α p( )( ) 		 Δρ

α p( )− limxk = ℓ 		p=1,

	
Δρ

α p( ) Δρ
α 	α =1,

	
Nρ p( )

	
Δρ

α p( ) 	 ℓ =0, 		Nρ
0 p( ) 		Nρ p( ).

α
	
x = xk( ) Δρ

α −

 ℓ

		 
lim
n→∞

1
ρn
|{k ≤n :|Δα xk − ℓ|≥ ε }|=0

	ε >0 		 Δρ
α S( )− limxk = ℓ 	 

xk → ℓ Δρ
α( )

Δρ
α − 		Δρ

α (S) 	ρn = n Δρ
α −

Δα −
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We give the following theorem without proof. 

Theorem 2.3  Let  and  be two sequences of real numbers, then 

(i)   and, 𝑐 ∉ ∁ implies   

 

(ii)  and , implies   

 

Theorem 2.4 Let  be a positive real number and 𝑚 ∈ ℕ  then the sequence space  

is a Banach space for  normed by 

                                                     (3) 

and a complete normed space for  by 

                                                           (4) 

 

Proof. It is trivial that  is a normed space normed by (3). Let  be a Cauchy 

sequence in  where  for each 𝑠 ∈ ℕ.  Then 

 

Let  be given, then there exists a positive integer  such that  , for 

all  So we have  

	
x = xk( ) 	

y = yk( )

		xk → x0 Δρ
α S( )( ) 		 cxk( )→ cx0 Δρ

α S( )( ) ,

		xk → x0 Δρ
α S( )( ) 		yk → y0 Δρ

α S( )( ) 		 xk + yk( )→ x0 + y0( ) Δρ
α S( )( ).

	p 	
Δρ
m p( )

		1≤ p<∞

		
x

Δ1
= ∑

m

i=1
xi + sup

n

1
ρn k=1

n

∑Δmxk
p⎛

⎝
⎜

⎞

⎠
⎟

1
p

	p− 		0< p<1

		
x

Δ2
= ∑

m

i=1
xi + sup

n

1
ρn k=1

n

∑Δmxk
p .

	
Δρ
m p( ) 	

x s( )
		Δρ

m p( ) , 		x
s = xi

s( )
i=1

∞
= x1

s ,x2s ,...( )∈Δρ
m p( ) ,

		
x s − xt

Δ1
→0,	 as	 s ,t→∞.

	ε >0 		n0 ε( )
		
x s − xt

Δ1
≤ ε

		s ,t >n0.
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for all  

 

Hence  for all  and  

  

and so  

 for all  

On the other hand we have 

 

From the last inequality, we get  

for all , for each 𝑘 ∈ ℕ   

Therefore  is a Cauchy sequence in ∁. Since ∁ is complete, it is convergent 

 

say, for each 𝑘 ∈ ℕ  Since , for each 𝑘 ∈ ℕ  and for all  we get  

		
∑
m

i=1
xi
s − xi

t + sup
n

1
ρn k=1

n

∑Δm xk
s − xk

t( ) p⎛

⎝
⎜

⎞

⎠
⎟

1
p

≤ ε , 	 		s ,t >n0.

	
xi
s − xi

t ≤ ε 		i =1,2,...,m

		
sup
n

1
ρn k=1

n

∑Δm xk
s − xk

t( ) p⎛

⎝
⎜

⎞

⎠
⎟

1
p

≤ ε , 	 		for	all	s ,t >n0

		Δ
m xk

s − xk
t( ) ≤ ε , 			 s ,t >n0.

		

xk+m
s − xk+m

t ≤
v=0

m

∑ −1( )v m
v

⎛

⎝⎜
⎞

⎠⎟
xk+v
s − xk+v

t( ) + m
0

⎛

⎝⎜
⎞

⎠⎟
xk
s − xk

t( ) ...

+ −1( )v m
m−1

⎛

⎝⎜
⎞

⎠⎟
x
k+ m−1( )
s − x

k+ n−1( )
t( ) .

		 xk
s − xk

t < ε 	 		s ,t >n0

		 xk
s( ) = xk

1 ,xk2 ,...( )

		lims xk
s = xk

		
xk
s − xk

t

Δ1
≤ ε 		s ,t >n0 ,
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and 

 

Hence, 

 

and 

,  

for each  and for all . This implies that  for all  that is 

 as  where   

 

Since, 

 

we get  Therefore  is complete. 

It can be shown that  is a complete normed space for  by (4).  

 

		i=1

m

∑ xi
s − xi

t ≤ ε

		
1
ρn k=1

n

∑Δm xk
s − xk

t( ) p ≤ ε p .

		
lim
t

i=1

m

∑ x s − xi
t =

i=1

m

∑ xi
s − xi ≤ ε

		
lim
t

1
ρn k=1

n

∑Δm xk
s − xk

t( ) p = 1
ρn k=1

n

∑Δm xk
s − xk( ) p ≤ ε p

	 k∈! 		s >n0 		
x s − x

Δ1
≤2ε 		s >n0 ,

	x s → x 		n→∞, 		x = xk( ).

		

1
ρn k=1

n

∑Δmxk −L
p
≤2p 1

ρn k=1

n

∑Δmxk
n0 −L

p
+ 1
ρn k=1

n

∑Δmxk
n0 − Δmxk

p⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

		x∈Δρ
m p( ). 	

Δρ
m p( )

	
Δρ
m p( ) 	p− 		0< p<1
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Theorem 2.5 The space  is a space. 

 

Proof. Let  Then given an  there exists an 𝑛& ∈ ℕ  such that 

  

Hence, we have  

for all  

and so  

for all  and for all 𝑘 ∈ ℕ  

Consequently, we have  

for all and for all 𝑘 ∈ ℕ  

and this completes the proof. 

 

Theorem 2.6 (i)  and the inclusion is strict, 

 

(ii)  and the inclusion is strict. 

 

Proof. We only give the proof for ii), the other can be given similarly. Let  then 

	
Δρ
m p( ) 	BK −

		
x s − x

Δ1
→0 		(s→∞). 	ε >0

		
x s − x

Δ1
< ε , 	 		for	all	 s >n0.

		
sup
n

1
ρn k=1

n

∑Δm xk
s − xk( ) p⎛

⎝
⎜

⎞

⎠
⎟

1
p

< ε , 	 		s >n0

		 xk
s − xk < ερ1 , 	 	 		s >n0

		 xk
s − xk < ε , 	 		 s >n0 	

		Δρ
m−1 S( )⊂ Δρ

m S( )

		Δρ
m−1 p( )⊂ Δρ

m p( )

		x∈Δρ
m−1 p( ) ,
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and so we have  To see that the inclusion is strict, let  and consider a 

sequence defined by  then  but . Actually, if , 

then  and . 

 

We give the following theorem without proof. 

 

Theorem 2.7 (i) If  then   

(ii) If  and  then   

 

Remark 2.8 In Theorem 2.7 (ii), the boundedness condition couldn't omitted. For this, 

consider a sequence  such as 

 where 𝑚 ∈ ℕ  

and let  for all 𝑛 ∈ ℕ, then we get  

 

On the other hand, 

		

1
ρn k=1

n

∑Δmxk −2L
p
≤2p 1

ρn k=1

n

∑Δm−1xk −L
p
+ 1
ρn k=1

n

∑Δm−1xk+1 −L
p⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

		x∈Δρ
m p( ). 		p=1

		x = im( ) , 		x∈Δρ
m p( ) , 		x∉Δρ

m−1 p( ) 	
x = im( )

		
Δm im( ) = −1( )mm!⎛

⎝
⎞
⎠ 		

Δm−1 im( ) = −1( )m+1m! i+ m−1( )/2( )⎛
⎝

⎞
⎠

		 xk( )→ ℓ Δρ
α w( )( ) , 		 xk( )→ ℓ Δρ

α S( )( ) ,

	 
xk ∈Δ

α ℓ∞( ) 		 xk( )→ ℓ Δρ
α S( )( ) , 		 xk( )→ ℓ Δρ

α w( )( ).

	
x = xk( )

		
Δmxk =

k2 , 			if			k =m2

0,			if			k ≠m2

⎧
⎨
⎪

⎩⎪
,

	ρn = n

		
1
ρn
|{k ≤n :|Δmxk −0|≥ ε }|=

n
n

→0(n→∞).
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i.e.  is not strongly convergent to zero. 

 

Theorem 2.9 Let  be a non-decreasing sequence of positive real numbers tending to 

 such that , then   

 

Proof. Let , then there exists a constant  such that , for all 

  Then for a given , we have  

 

 

 

Hence, we get  

 

Theorem 2.10 Let  be a non-decreasing sequence of positive real numbers tending 

to  such that  If  for all 𝑛 ∈ ℕ  then   

 

		
1
ρn k=1

n

∑|Δmxk −0|=
1
n k=1

n

∑k2 /→0 (n→∞),

	Δ
mxk

	
ρ = ρn( )

∞ 		limsupn
ρn
n <∞, Δρn =O 1( ) 		Δρ

α S( )⊂ Δα S( ).

		
limsupn

ρn
n

<∞ 		M >0
	

ρn
n

≤M

		n≥1. 	ε >0

		 
1
n
|{k ≤n :|Δα xk − ℓ|≥ ε }|=

ρn
n
1
ρn
|{k ≤n :|Δα xk − ℓ|≥ ε }|

		 
≤ M
ρn
|{k ≤n :|Δα xk − ℓ|≥ ε }|.

		Δρ
α S( )⊂ Δα S( ).

	
ρ = ρn( )

∞ 		limsupn
ρn
n <∞, Δρn =O 1( ). 	ρn ≥n 		Δ

α S( )⊂ Δρ
α S( ).
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Proof. If  then for every  we have 

 

 

 

 

 

Theorem 2.11 Although the space  is normal and monotone, the sequence space 

 is not solid, is not monotone, is not sequence algebra and is not symmetric, for 

 and   

 

Proof. Let 𝑥 ∈  and  be a sequence such that  for each 𝑛 ∈ ℕ  

Then we get 

 

Hence  is solid and hence monotone. 

 

Example 1 It is obvious that, if  then  but 

Hence  is not a sequence algebra. 

 

		 xk → ℓ Δα S( )( ) , 	ε >0

		 
1
n
|{k ≤n :|Δα xk − ℓ|≥ ε }|=

ρn
n
1
ρn
|{k ≤n :|Δα xk − ℓ|≥ ε }|

		 
≥ 1
ρn
|{k ≤n :|Δα xk − ℓ|≥ ε }|.

		Nρ
0 p( )

	
Δρ
m p( )

		m≥1 		p>0.

		Nρ
0 p( ) 	

y = yn( ) 	
xn ≤ yn

		
sup 1

ρn k=1

n

∑ xn
p
≤ sup 1

ρn k=1

n

∑ yn
p .

		Nρ
0 p( )

		x = km−2( ) , 		y = km−2( ) , 		x , y∈Δρ
m p( ) ,

		xy∉Δρ
m p( ). 	

Δρ
m p( )
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Example 2 It is obvious that, if  then  but  for 

 Hence  is not solid. 

 

Example 3 We have that  if  Let  be a rearrangement 

of  which is defined as follows:  

 

Then  Hence  is not symmetric. 
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1. Introduction and Preliminaries 

 

The notion of Polygroups, introduced as Quasi-canonical hypergroups by Bonansinga et al. 

[12], are special subclass of hypergroups [6]. Polygroup has large application in many area of 

Mathematics, such as geometry, lattice theory, combinatorics and color scheme, etc.. Heidari 

et al. introduced the concept of topological hypergroup [3] and topological polygroup [4]. 

Singha et al. introduced topological complete hypergroup [7], topological regular hypergroup 

[7] and investigated some of their properties. Different uniform structures for polygroups 

have been studied in [8]. Till date, very few papers [13, 3, 4, 9, 7, 8, 10] treated the 

topological notion of hypergroups and its subclasses. In this new setting, we introduce and 

study different topological polygroups finding inter-relations between them. 

  We begin with some basic definitions and results which will be used as ready references. A 

hyperoperation on a nonempty set   is a function            , where       is the 

family of nonempty subsets of  . The ordered couple       is called a hypergroupoid. If   

and   are two nonempty subsets of a hypergroupoid       and    , then  
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A polygroup [14, 1] is a system             , where    ,     is a unitary operation on  , 

            satisfying the following axioms for all        :   

    •                ;  

    •            ;  

    •       implies         and        .  

The following elementary facts hold readily from the above axioms:  

                                                     

For a nonempty subset   of  ,                and   is called symmetric if      . A 

nonempty subset   of a polygroup   is called subpolygroup of   if (i)       implies 

      and (ii)     implies      .  

For more details about polygroup, one may refer to [1, 14]. 

   Levine [11] introduced semi-open sets in a topological space in 1963. A set   in a 

topological space   is said to be semi-open if and only if there exits an open set   such that 

     . Collection of all semi-open sets in   is denoted by      . Arbitrary union of 

semi-open sets is semi-open but intersection of two semi-open sets not necessarily semi-open. 

The problem is, “whether the intersection of a semi-open set with an open set is semi-open?”. 

A subset   of   is a semi-neighborhood of a point    , if there exists         such that 

     .   is semi-open if it is a semi-neighborhood of each of its points. If         

    is the product space of the topological spaces       ,        and         ,    

     , then              . The complement of a semi-open set is called semi-

closed; for    , the semi-closure of   is denoted by       , is the intersection of all semi-

closed sets of   containing   [15, 16].          if and only if for any semi-open 

neighborhood   of  ,      . 

  Let   and   be topological spaces. A mapping       is semi-continuous if for each open 

set   in  ,             . Equivalently, a mapping       is semi-continuous if and 

only if for each     and each open neighborhood   of      there is a semi-open 

neighborhood   of   such that       . 

  Separation axioms semi-  , semi-  , semi-   and  -regular are defined as the classical 

axioms   ,   ,    and regular, replacing everywhere „open neighborhoods‟ by „semi-open 

neighborhoods‟ [2]. 
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  Let       be a topological space and       denotes the collection of all nonempty subsets 

of  . Then, the family                       :      is a subbase for a 

topology    on       [17]. Throughout this paper, „neighborhood‟ stands for „open 

neighborhood‟. 

2. Different topological polygroups and their inter-relations 

 

  In this section, we introduce semi-topological polygroup,   topological polygroup and 

study some of their properties.  

Definition 2.1. Let            be a polygroup and       be a topological space. Then, the 

system              is called   

(i)  an    topological polygroup if the mappings             and         are 

continuous while considering the product topology on     and the topology    on      .  

(ii) a semi-topological polygroup if for each       and     with          , 

there exist semi-neighborhoods  ,   of     respectively, such that          , for all 

   ,    .  

(iii) an   topological polygroup if with respect to the product topology on     and the 

topology    on       the mappings           from           and       from 

    are semi-continuous.  

  

Example 2.2. Consider the polygroup           together with the hyperoperation   

defined as follows: 

   

   1 2 3 

1 {1} {2} {3} 

2 {2} {1, 3} {2} 

3 {3} {2} {1, 3} 

  

and a topology                   on it. Then,   is an    topological polygroup.  
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It is clear from the above definitions that every    topological polygroup is both semi-

topological and   topological polygroup. We present some other examples.  

Example 2.3. Consider the polygroup           with the hyperoperation   defined as 

follows:  

   1 2 3 

1 {1} {2} {3} 

2 {2} {1, 3} {2} 

3 {3} {2} {1, 3} 

  

and a topology                       on  . Then,   is a semi-topological polygroup but 

not an    topological polygroup.  

Theorem 2.4. For a semi-topological polygroup  , if        , then          .  

Proof. The proof is same as of Theorem 5 [5].                                                  

Unless otherwise mentioned, always consider the topology    on       in the sequel.  

 

Theorem 2.5. If              is a semi-topological polygroup, then the map       

      defined by              is semi-continuous with respect to the product topology 

on    .  

Proof. Consider           and     such that         . Then there exist semi-

neighborhoods   and   containing     respectively, such that          , for all 

   ,    . This implies     is a semi-neighborhood of       such that          .                                                                            

Theorem 2.6. If              is a semi-topological polygroup, then the map       

      defined by            and the map       defined by          are semi-

continuous.   

Proof. Let     and     such that      . Then,           and there exist semi-

neighborhoods  ,   of  ,   respectively, such that          , for all        . In 

particular,          , for all     and hence       . 
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Now let           and     such that        , i.e.,              . 

Then, there exist semi-neighborhoods     of       respectively, such that         

 , for all        . Then,       is a semi-neighborhood (by Theorem 2.4) of   and 

       , for all        . Therefore,     is a semi-neighborhood of       in 

    such that          . 

Corollary 2.7. Every semi-topological polygroup is an   topological polygroup.  

Theorem 2.8. If     and    , then    ,          .  

Proof. Let     and      . Then,       for some     and hence        , i.e., 

         . There exist semi-neighborhoods     of     respectively, such that 

         , for all    ,    . In particular, for     and for all    , 

         , i.e., for each    , there exists     such that      . Therefore, 

        and hence          . So,  
   

             .                                                             

Proposition 2.9. In a semi-topological polygroup for a given neighborhood   of the scalar 

identity   there exists a symmetric semi-neighborhood   of   such that    .   

Proof. If   is a neighborhood of  , then     is a semi-neighborhood of   (by Theorem 2.4). 

Take        , then   is a symmetric semi-neighborhood of   such that    .                      

  Next examples illustrate that the converse of the Corollary 2.7 is not true in general.  

Example 2.10. Consider a polygroup         with hyperoperation   on   defined as 

follows:  

  

   1 2 

1 {1} {2} 

2 {2} {1, 2} 

 

and a topology             on  . Then,  
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Here, the map             defined by            is continuous at 

                  and semi-continuous at      . The inverse mapping       defined by 

         is continuous and hence semi-continuous. Thus,   is an   topological 

polygroup. But,   is not a semi-topological polygroup. For,       and           is not 

semi-open in  .   

Example 2.11. Consider           with the hyperoperation   defined as follows  

  

   0 1 2 

0 {0} {1} {2} 

1 {1} {1} P 

2 {2} P {2} 

  

Then       is a polygroup. Equip   with the topology            .  

 

Here, the map             defined by            is continuous at 

                                         . However, it is semi-continuous at            . 

The inverse mapping       defined by          is continuous and hence semi-

continuous. Thus,   is an   topological polygroup. Here also   is not a semi-topological 

polygroup. For,       and           is not semi-open in  .  

  

Example 2.12. Consider the polygroup             together with the hyperoperation   

defined as follows: 
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   1 3 5 7 

1 {1} {3} {5} {7} 

3 {3} {1} {5} {7} 

5 {5} {5} {1, 3, 7} {5, 7} 

7 {7} {7} {5, 7} {1, 3, 5} 

 

Let   be equipped with the topology   {               }. Then,   is an   topological 

polygroup and not a semi-topological polygroup. As the map             defined by 

           is continuous at (1,1), (1,3), (3,1), (1,5), (5,1), (1,7), (7,1), (3,5), (5,3), 

            and semi-continuous at                              ; inverse mapping       

defined by          is continuous and hence semi-continuous. Therefore,   is an 

  topological polygroup and not a semi-topological polygroup.  

  It is clear from the above examples that the class of   topological polygroups is wider than 

the class of semi-topological polygroups.  

Theorem 2.13. Let              be a semi-topological polygroup. Then, for    , the maps 

           by       (left translation) and            by       (right 

translation) are semi-continuous.   

Proof. For     and    , let         , i.e.,        . Then, there exist semi-

neighborhoods   and   of   and     respectively, such that          , for all    , 

   . By Theorem 2.4, the set     is a semi-neighborhood of  . In particular, for     and 

for all      ,        . This shows that for    ,    is semi-continuous on  .  

Theorem 2.14. Let   be a subpolygroup of a semi-topological polygroup  . Then   

    (1)   is semi-open if it contains a nonempty open subset;  

    (2)   is a semi-closed semi-topological polygroup if it is open.  
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Proof. (1) Let   be a nonempty open subset of   contained in  . For    ,     is semi-

open in   (by Theorem 2.8). Therefore,    
   

    is semi-open in  . 

(2) Suppose   be open in  . Let       and   be an open subset of   such that       

   . Since   is open in  , there exist semi-neighborhoods     in   of     respectively, 

such that          , for all        . The sets       and       are 

semi-neighborhoods in   of     respectively, such that          , for all       

 . Thus,   is a semi-topological polygroup. 

  For    ,     is semi-open in   (by Theorem 2.8). Now,    
   

      
   

     

  
     

         
     

    . This implies       
     

     and hence   is semi-

closed. 

It is clear from (2) of Theorem 2.14 that every open subpolygroup of a semi-topological 

polygroup is also a semi-topological polygroup, such subpolygroups are called semi-

topological subpolygroups.  

Remark 2.15. Consider the Example 2.12 of   topological polygroup. The collection of 

semi-open sets in   is  

                                                           . 

Here,   is a semi-   space, but not semi-  . Also it is not a  -regular space, since for the 

closed set           and    , there exist no disjoint semi-open sets containing them. 

 Also, the polygroup in Example 2.10 has the same properties.   

Theorem 2.16. If in a semi-topological polygroup  , for every neighborhood   of the 

identity   there exists symmetric neighborhood   of   such that      , then   is  -

regular at  .   

Proof. Let   be a neighborhood of the identity  . Then, there exists a symmetric 

neighborhood   of   such that      . To show         , let         .     is a 

semi-neighborhood of  , so        . Therefore, there exist         such that 

       . This implies        
              .                         
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Theorem 2.17. Let   be a semi-topological polygroup and     are subsets of  . Then, the 

following results hold.   

    (1)                  ;  

    (2)                 .  

Proof. (1) Suppose,                . Then,      , for some                  . 

Let   be a neighborhood of  . Then,         and there exist semi-neighborhoods 

    of     respectively such that for all        ,        . Since   

               , there exist       and      . Now,           and 

       . Thus,      . 

(2) Let              and   be a neighborhood of  . Then,     is a semi-neighborhood of 

    (by Theorem 2.4). Since           ,        , which implies        . 

Thus,        .                                                                      

We conclude this section with the following remark.  

Remark 2.18. The inclusion in (1) of Theorem 2.17 may not hold for an   topological 

polygroup. For, consider the Example 2.12 of   topological polygroup and take         

and        . Then,         ,             ,                ,           

and            .   
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1. Introduction 

The idea to construct a new sequence space by means of the matrix domain of a particular 

limitation method has recently been employed by Altay and Basar[3, 4], Basar et al.[7], 

Kirisci and Basar[8], Ng and Lee[12], Sonmez[14] and many more. Moreover, Altay and 

Basar[1, 2], Malkowsky[10] and Aydin and Basar[6] have employed on to construct new  

paranormed sequence spaces by means of the domain of some infinite matrices. The domain 

of generalized difference matrix B(r, s) on some Maddox’s spaces was studied by Aydin and 

Altay [5]. More recently, domain of the double sequential band matrix B( r , s )on some 

Maddox’s spaces was studied by  Ozger and Basar[13] and Nergiz and Basar[11]. 

2. Preliminaries 

Throughout the paper we denote w, ℓ, c, c0 and ℓp 
be the space of all, bounded, convergent, 

null and p-absolutely summable sequences respectively.  
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Let X and Y be two sequence spaces and B= (bnk) be an infinite matrix of real or complex 

numbers bnk, where n, k ∈N = {0,1,2, . . .}. Then, we say that B defines a matrix mapping 

from X into Y, denoted by B:X→Y, if for every sequence x= (xn)∈X, the sequence Bx= (Bx)n is 

in Y where,  

         (Bx)n=∑      

   , (n∈N and x∈X),      (2.1) 

 Provided the right hand side converges for every n∈N and x∈X. 

 

If μ is a normed sequence space, we write Dμ(B) for x∈w for which the sum in (2.1) 

converges in the norm of μ. We write (λ, μ) ={B: λ⊂Dμ(B)} for the space of those matrices 

which send the whole of the sequence space λ into the sequence space μ in this sense. 

The sequence space λB = {x=(xk)∈w: Bx∈λ} is called the domain of an infinite matrix B in a 

sequence space λ. One can easily verify that the sequence spaces λB and λ are linearly 

isomorphic when B is triangle. A paranormed space (X, g) is a topological linear space in 

which the topology is given by paranorm g, a real sub-additive function on X such that g(θ) = 

0, g(x) =g(−x) and scalar multiplication is continuous means that λn→λ, xn→x imply λnxn→λx, 

for scalars λ and vectors x. 

We consider (pk) is a bounded sequence of positive real numbers with suppk=H and 

M=max{1, H}. Throughout we assume  
      

        provided 0< inf pk≤H <. 

The linear space ℓ(p)
 
were defined by Maddox [9] as follows: 

ℓ(p)={      ∈   ∑       
   }, (0< pk≤H <),  

which is the complete space paranormed by h(x) = ∑       
  

 

 . Throughout C denotes the 

complex field. 

Let,  ̂= (rk) and  ̂= (sk) are convergent sequences whose entries either constants or distinct 

non-zero numbers then we define the matrix  ̂  ̂      ̂  as follows:  ̂  ̂      ̂  

           where, 

         {
        

          
            

 

for all k, nN. 
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3. Some new paranormed sequence spaces and their topological properties 

 

We define the sequence space ℓ(  ̂    as the set of sequences whose transform is in the spaces 

ℓ(p) respectively, that is  

ℓ(  ̂    {       ∑                
     }, (0<pk≤H <). 

Theorem 3.1 The sequence space ℓ(  ̂    is a the complete linear metric space paranormed 

by g, defined by g(x) =  ∑                
  

  
 

 . 

Proof: One can easily prove that ℓ(  ̂    is a linear space with co-ordinate wise addition and 

scalar multiplication since  ̂  ̂      ̂  is a triangle matrix and ℓ(p) is a linear space. 

It is clear that g(θ) = 0, g(x)≥0 for all x∈ ˆ( , )D p  and g(−x) = g(x). 

Let x, y∈ ˆ( , )D p ; then by Minkowski’s inequality we have 

 g(x+y)={∑                              
 }

 

  

            ={∑                             
  
   

 }
 

  

   ∑                  
 

   ∑                  
 

   

            =g(x) +g(y) 

Consider a sequence {x
n
} of elements of ℓ(  ̂   , such that g(x

n
−x)→0, as n→ and (βn) is a 

sequence of scalars with βn→β, as n→. Now, we observe that  

g(βnx
n
−βx)≤g[(βn−β)(x

n
−x)]+g[β(x

n
−x)]+g[(βn−β)x].    (3.1) 

It follows from βn→β (n→) that |βn−β|<1 for all sufficiently large n; hence 

     g[(βn−β)(x
n
−x)]≤     g(x

n
−x)=0.     (3.2) 

Furthermore, we have       g[β(x
n
−x)]≤max{1,|β|

M
}     g(x

n
−x) = 0. (3.3) 

Also, we have      g[(βn-)x]≤      |βn−β|g(x) = 0.    (3.4) 

Then, we obtain from (3.1),(3.2),(3.3) and (3.4) that g(βnxn−βx)→0, as n→.  
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This shows that g is a paranorm on ℓ(  ̂    . 

Furthermore, if g(x) = 0, then   ∑                
  

  
 

   . 

Therefore,                
     for each k∈N. If we put k= 0, since s−3= 0 and r00, we 

have x0= 0. Similarly, for k= 1, 2, since s−2=s−1= 0 and r10 and r20, we have x1=x2= 0. For 

k= 3, since x0= 0, we have x4= 0. Continuing in this way, we obtain xk= 0 for all k∈N. That is, 

x=θ. This concludes that g is a total paranorm. 

Now, we show ℓ(  ̂    is complete. Let {x
i
}be a Cauchy sequence in ℓ(  ̂   , where 

x
i
={  

   
,   

   
   

   
 - - -}. Then, by the definition of Cauchy sequence, for a given ε >0, there 

exists a positive integer n0 depending on ε such that g(x
i
−x

j
)< ε for all i, j ≥0. 

Now, using the definition of g for each fixed k∈N, 

|{  ̂  ̂      ̂   }
 

 {  ̂  ̂      ̂   }
 
|  {∑|{ ̂   ̂      ̂   }

 
 { ̂   ̂      ̂   }

 
|
  

 

}

 
 

 

     =g(x
i
 - x

j
)<,    (3.5) 

                                   

 

for every i, j > n0(ε), which leads us to the fact that 

{{ ̂  ̂      ̂   }k, { ̂  ̂      ̂   }k, { ̂  ̂      ̂   }k,- - - } is a Cauchy sequence of complex 

numbers and is convergent for each k∈N. Since C is complete, it converges. Suppose, for 

each fixed k, { ̂  ̂      ̂   }k→{ ̂  ̂      ̂  }k, as i→∞. 

 

Consider the sequence {  ̂  ̂      ̂   1,   ̂  ̂      ̂   2,   ̂  ̂      ̂   3- - - }. Then for 

each KN and  i, j > n0() we have 

[∑ |(  ̂  ̂      ̂   )
 

 (  ̂  ̂      ̂   )
 
|
   

   ]

 

 
 (     )       (3.6) 

By taking m, K , we have for i > n0() that 
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 (    )=[∑ |(  ̂  ̂      ̂   )
 

 (  ̂  ̂      ̂  )
 
|
  

 ]

 

 
    (3.7) 

 

This shows that x
i
-x ℓ(  ̂   . Since ℓ(  ̂    is a linear space.  

We conclude that x ℓ(  ̂   . 

It follows that x
i
  x, as i→∞ in ˆ( , )D p . Hence, ˆ( , )D p  is complete. 

Theorem 3.2 Convergence in ℓ(  ̂    is stronger than coordinator-wise convergence. 

Proof: First we show that g(x
n
 - x)  0, as n  implies   

  xk,, as n ,  for every kN. 

Fix k, then we have 

       |        
   

     
   

              |
  

  

    
  

∑|        
   

     
   

              |
  

 

 

           =                  

 

Hence, we have for k = 0 that 

                                 |    
   

     
   

          |   , 

 which gives  |  
   

   | 0, as n . 

Similarly, for each kN, we have |  
   

   | 0, as n . 

A sequence space  with a linear topology is called a K-space provided each of the maps pi : 

   C defined by pi(x) = xi is continuous for all iN. A K-space  is called an FK-space 

provided   is complete linear metric space. An FK-space whose topology is normable is 

called BK-space. Given a BK-space , we denote the n
th
 section of a sequence x = (xk)  

by x
[n]

:=∑        
   , and we say that x = (xk) has the property AK if                   

 . If AK-property holds for every x, then we say that the space  is called AK-space. 
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Theorem 3.3 The space ℓ(  ̂    has AK property. 

Proof: For each x = (xk)  ℓ(  ̂   , we put x
[n]

:=∑        
   , for all n{1, 2, 3,- - -}. 

Let   > 0 and x  ℓ(  ̂    be given. Then, there exist n0 = n0() N such that  

∑                
  

 

    

   

Then, we have for all n n0, 

g(x -x
[n]

) = g(x-∑        
    = ∑                

   
      

 

  

    (∑                   
    

)
 

   

This shows that x =∑       
 . 

Now we have to show that this representation is unique. We assume that x =∑   
   

 . 

Then for each k; 

                            
   

 
  

       ∑                              
  

 

 =g(x - x)=0 

Hence,                          , for each kN. 

For k = 0,  r00 = r0x0. Since r00, we have 0 = x0. Continuing in this way, we obtain 

k = xk, for each kN. This shows that the representation is unique.  

This completes the proof. 

4 Conclusion 

The difference operator 3 as a particular case of m studied by Tripathy and Esi[15] can 

be obtain as a special case of the operator  ̂  ̂      ̂ , if we consider   ̂    and  ̂    . 
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Further,  ̂  ̂      ̂  reduces to the difference operator D(r, 0, 0, s) as the special case when  

 ̂     and  ̂    , investigated by Tripthy and Paul [16]. Therefore, the results related 

to the domain of the matrix  ̂  ̂      ̂   investigated in this paper are more general and 

more comprehensive than the corresponding consequences of the domain of the matrix 

D(r, 0, 0, s). 
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APPLICATIONS OF FRACTIONAL ORDER OPERATORS FOR STRONGLY 

CONVERGENT SEQUENCES AND THEIR TOEPLITZ DUALS 
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Abstract 
In this paper we define new classes of strongly convergent difference sequences 

  ,     ( )    - and  ,     ( )    - by using the fractional difference operator   ( ) and a 

modulus function. Also, we investigate some topological properties and establish the 

  duals of the spaces   ,     ( )    -  and  ,     ( )    - . Furthermore, the matrix 

transformations among these spaces are characterized. 

 

Keywords:   Sequence space, Fractional difference operator, modulus function,   duals, 

Matrix transformation. 

AMS Subject Classification no. 46A45, 46A35, 40A05. 

 

 

1. Introduction and Preliminaries 

 

Let  ( ) be a Gamma function of the real number   and   *            +. By the 

definition, it can be expressed as an improper integral, i.e. 

 

                                                                 ( )  ∫           
 

 
                                             (1.1) 

 

It is clear from (1.1) that if   lies in the set of nonnegative integers  , then  (     )      
Now we discuss some essential properties of Gamma function as follows 

(1).  If    , then we have  (     )    . 
(2).  If     *            +  then we have  (     )    ( )   
(3).  For particular cases, we have  ( )    ( )     ( )      ( )        

 

Let   be the class of all real valued sequences. Any subclass of   is termed as a sequence 

space. By      and     we denote the class of all convergent, bounded, and null convergent 

sequences, respectively, with norm             . The spaces of all  -absolutely and 

absolutely summable series, normed by (       )
 
  for       and       ,  are denoted 

by    and   , respectively. 
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Take two sequence spaces     and     (   ) be an infinite matrix of    , where     are 

real or complex numbers with      . A matrix mapping         is called as   -

transform of   in  , if for every sequence   (  )     the sequence    *(  ) +, where 

 

                                           (  )               (   )                                                  (1.2) 

 

Throughout the paper, the summation notation without limits goes from   to  . Let the 

collection of all matrices   such that        is  -transform is denoted by (   ). Thus, 

  (   ) if and only if the series on the right side of (   ) converges for all     and 

each    , and we have    *(  ) +      for every    . A sequence   is  -

summable to   if    converges to   where    is the  -limit of  . 

 

If a sequence (  ) is contained in  , a normed sequence space, and has the property that for 

all    ,  there exists  a unique sequence of scalars (  ) such that 

 

   
   

   (                )       

 

having the sum  . Then we call it as the expansion of   with respect to sequence (  ), which 

can be written as        . 

 

A matrix   (   ) is called a triangle if       for       and       for all    . It is 

trivial that  (  )    (  )  holds for triangle matrices     and a sequence  . Further, a 

triangle matrix   uniquely has an inverse       which is again a triangle matrix. Then, 

   (  )   ( )   holds for all    . We write additionally   for the class of all 

sequences   with the property that       for all    . 

 

For an infinite matrix   and a sequence space  , the matrix domain    is defined by 

  

                                        *  (  )         +                                                   (1.3) 

 

which forms  sequence space. Recently, a number of authors construct  new sequence spaces 

on various normed spaces by considering the matrix domains with particular limitation 

method, e.g., Wang [26], Ng and Lee [19], Ayd n and Ba ar [4], Altay [1], Altay and Ba ar 

[2, 3], Ba ar r and Kara [5, 6], Demiriz and  akan [10], Duyar and Demiriz [11], Polat and 

Ba ar [20]. 

 

K zmaz [13] introduced the notion of new difference sequence spaces   ( )  ( )  and 

  ( ) which was further expanded by Et and  olak [12] by introducing the spaces   ( 
 ) 
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 (  )  and   ( 
 ). For a non-negative integer  , we have sequence spaces defined as 

follows 

  ( )  *  (  )           +, 
 

where     (    )  (               )  and         for all    , which is 

further equivalent to the following expressions 

     ∑(  ) 
 

   

 .
 
 
/       

 

Taking    , we get the spaces studied by Et and  olak [12]. Furthermore, Malkowsky et 

al. [14] have been introduced the spaces 

                                                
( )( )  *      

( )
   +, 

where   
( )

    ( )  for all    . In this study, the operator   
( )

     is defined as 

follows: 

     ∑(  ) 
 

   

 .
 
 
/       

 

The operator  ( )  generalizes the operator   ( )  introduced by Malkowsky and Parashar 

[15], Polat and Ba ar [20], Malkowsky et al. [14] if    , where   is an integer. 

 

Baliarsingh and Dutta, defined a fractional difference operators        (for a proper 

fraction  )  and their inverse in [7] as follows: 

 

(   )                                                    ∑(  ) 
 (   )

   (     )

 

   

     

 

 

(   )                                               ( )   ∑(  ) 
 (   )

   (     )

 

   

     

 

 

(   )                                                     ∑(  ) 
 (   )

   (     )
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(   )                                                (  )   ∑(  ) 
 (   )

   (     )

 

   

      

 

 

Throughout the text we consider that the series defined in (   )  (   ) are convergent. In 

particular, for   
 

 
, 

 

  
 
        

 
       

 
       

  
       

   
       

   
        

  
  
        

 
       

 
       

  
        

   
        

   
        

  ( 
 
)       

 
       

 
       

  
       

   
       

   
        

  (  
 

)       

 
       

 
       

  
        

   
        

   
        

 

Baliarsingh [8] have been defined the spaces  (      ) for   *       + by introducing 

the fractional difference operator    and a positive fraction   in [13]. 

 

2. The sequence spaces    ,     ( )    - and  ,     ( )    - 
 

Here, we introduce new sequence spaces    ,     ( )    - and  [     ( )    ]   

A modulus function is a function   ,   )  ,   ) such that 

(1)  ( )      if and only if        
(2)   is increasing, 

(3)  (   )   ( )   ( )  for all         
(4)   is continuous from the right at    

 

which implies that on ,   ),   must be continuous everywhere. The modulus function may 

or may not be bounded.. For example, for  ( )  
 

   
    is bounded and if   ( )        

       then   is unbounded.  This function has been studied in (,  - ,  - ,  - ,  - ,  -) 

and references therein. 

 

In [16] and [17] Maddox introduced the concept of strongly almost convergence. Further, a 

sequence   (  ) is called a strongly almost convergent if there occurs a number   such that 

   
   

 

 
∑           

 

   

 

uniformly in s. 
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Let   be the set of all sequences   (  ) such that      for all    . For    , let 
 

 
 (  

   
). For a proper fraction  , let   (  ) be a bounded sequence of positive real numbers 

and   be a modulus function. Then we define the following sequence spaces as: 

 

  [     ( )    ]  ,  (  )    (
 

 
*∑ (   

( )  )

 

   

+

  

)    - 

and 

 [     ( )    ]  ,  (  )    (
 

 
*∑ (   

( )  )

 

   

+

  

)   -  

 

 

If  ( )       Then above sequence spaces reduce to   [   
( )    ] and  [   ( )    ]. By 

taking   (  )   , for all    , then we get the sequence spaces   [     ( )  ]  and 

 [     ( )  ]. 
 

Now, we introduce the triangle matrix   
( )

 (   ), 

 

    {
∑(  ) 

 (   )

   (     )
     

   

   

        

                                                                     

 

 

 

for all      . Further, for any sequence   (  ) we have the sequence   (  ) to be 

used as the    
( )

-transform of the  , that is 

                                  
( )  

 
       

 
   .         

 (   )

  
      /     

        (2.1) 

 

                                                                        

 ∑(∑(  ) 
 (   )

   (     )
    

   

   

)

 

   

                                  

for all    . With the expression of (1.4), the sequence spaces   ,     ( )    -  and  

 [     ( )    ] may be restated as follows 
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        [     ( )    ]  *  (   )+
  

( )  and   [     ( )    ]  * (   )+
  

( )                  (2.2) 

 

Lemma 2.1 ([7], Theorem 2.2). 

 

 ( )   ( )   ( )   ( )   (   )  
 

Lemma 2.2 ([7], Theorem 2.3). 

 

 ( )   (  )   (  )   ( )     

Where    denotes  the identity operator on  . 

 

Theorem 2.3. Let     (  ) be a bounded sequence of positive real numbers and   be a 

modulus function. Then the sequence spaces   ,     ( )    - and  [     ( )    ] forms 

linear metric spaces with the paranorm by  , defined by 

                                 ( )      .
 

 
|  (   

( )  )
 
   |

  
/

 
 

 ,                                             (2.3) 

where       (     
 

    ). 

Proof. We consider the theorem for the space   [     ( )    ]. It is clear that  ( )    and 

 (  )   ( )  for all     [     ( )    ] . Take any two sequences 

       [     ( )    ]  and           to check the linearity of   [     ( )    ] 
corresponding to the coordinate wise addition and scalar multiplication. By the linearity of 

operator  ( ) and Maddox [29], we find that 

 

 (        )     
 

(
 

 
|∑ (   

( )(         ))

 

   

|

  

)

 
 

 

                                     *      +    
 

(
 

 
|∑ (   

( )  )

 

   

|

  

)

 
 

 

                                           *      +    
 

(
 

 
|∑ (   

( )  )

 

   

|

  

)

 
 

 

 

                         *      +  ( )      *      + ( ) 
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This gives the subadditivity of    that is, 

 

                                        (   )   ( )   ( )                                                          (2.4) 

 

Let *  + be any sequence of the points in   [     ( )    ] such that  (    )    and 

(  
 ) be any sequence of real scalars with   

    . Then by inequality (   ) we get 

 

 (  )   ( )    (    )  
 

Since, * (  )+ is bounded, thus, it implies the scalar multiplication for   to be scontinuous 

which can be followed from the inequality 

 (  
       )     

 
(
 

 
|∑ (   

( )(  
   

      ))

 

   

|

  

)

 
 

 

 

                         (   
     

  
  (  )      

  
  (    )) 

                                                      

                                                         for all n  . 

 

Therefore, the sequence space   [     ( )    ] is paranormed by  . This completes the 

proof.  

 

Theorem 2.4. Let  p = (pk) be a bounded sequence of positive real numbers and    be a 

modulus function. Then the sequence spaces   [     ( )    ] and  [     ( )    ] forms 

complete metric spaces with a paranorm by  , defined in (   )  
 

     . We consider this theorem for the space   [     ( )    ]. Suppose that *  + is a 

Cauchy sequence in the space   [     ( )    ] , where    *  
( )

   
( )

   
( )

  +  Since 

*  +  is a Cauchy sequence, thus  for given    , there will be a positive integer   ( ) such 

that 

 

 (     )                   ( )   
 

By using the definition of   for each fixed     ( ), we have 
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| .*  

( )
  +  *  

( )
  + /|

  
 

    
 

 

 
| .*  

( )
  +  *  

( )
  + /|

  
 

    

 

for all       ( ) and by continuity of  , 2(  
( )

  )  (  
( )

  )   3 is a Cauchy sequence 

in   for each fixed     . By completeness of  , the sequence *  
( )

  +  converges and 

suppose that 

 

*  
( )

  +  *  
( )

 +            
 

For each fixed          and     ( ), it is clear that 

 

                                                       
 

 
| .*  

( )
  +  *  

( )
 + /|

  
 

                                (2.5) 

 

Since    *  
( )

+ is a sequence in   [     ( )    ], we have 

 

                                                       
 

 
| *  

( )
  + |

  
                                    (2.6)                           

 

Then by combining (   ) and (   ), we obtain that  

 

 

 
| *  

( )
 + |

  
 

  
 

 
| .*  

( )
  +  *  

( )
 + /|

  
 

 
 

 
| *  

( )
  + |

  
 

 

                                          
                                                                         ( )  
 

This shows that the sequence *  
( )

 +  lies in the space   ( ) . Since *  +  is an arbitrary 

Cauchy sequence, the space   [     ( )    ] is complete, which completes the proof. 

 

Theorem 2.5. The sequence spaces   [     ( )    ] and  [     ( )    ] are BK-spaces 

under the norm 

‖ ‖
  [     ( )    ]  ‖ ‖

 [     ( )    ]     
 

 

 
|∑ (   

( )  )

 

   

|

  

  

 



Journal Tri. Math. Soc. Vol. 22(Dec-2020)           ISSN 0972-1320 

59 
 

Proof. Since (   )  holds, and      form BK-spaces under their natural norms (see [9], pp. 

16-17) and the matrix   
( )

 (   ) is a triangle (Theorem 4.3.12 of Wilansky [27], pp. 63) 

resuls the fact that the spaces   [     ( )    ] and  [     ( )    ] form BK-spaces with 

the given norms. It completes the proof.  

 

Now, we consider the following theorem concerning the isomorphism among the spaces 

  [     ( )    ],   [     ( )    ] and      respectively. 

 

Theorem 2.6. The sequence space   [     ( )    ] and   [     ( )    ] are isometrically 

isomorphic to the spaces   and    respectively, i.e, 

 

  [     ( )    ]           [     ( )    ]     
 

Proof. We prove the theorem for the space  [     ( )    ]. To prove this, we only need to 

show that there exist a linear bijection among the spaces  [     ( )    ] and  . Consider the 

transformation   from  [     ( )    ]  to   defined by using the notation of (    ) , as 

         
( )

 . Then, clearly   is linear. Moreover,      whenever       is 

trivial. Hence   is injective.  

We assume that   (  )    and define the sequence   (  )   [     ( )    ] by  

 

   ∑(  ) 
 (   )

   (     )

           

    

 

   

 

 

Then by lemma 2.2, we deduce that 

        
   

 

 
*∑ (   

( )  )

 

   

+

  

    
   

 

 
*∑ (   

( ) (∑(  ) 
 (   )

   (     )

           

    

 

   

))

 

   

+

  

 

                                      
   

 

 
*∑ (   

( ) ( (  ) 4
       

  
5))

 

   

+
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*∑ (       )

 

   

+

  

 

                                               . 

 

Hence,    [     ( )    ], so   is surjective. Furthermore one can easily show that     is 

norm preserving. With this the proof is completed.  

 

3. The     Dual of The Spaces   [     ( )    ] and  [     ( )    ] 
 

Here, we determine the   dual of the spaces   [     ( )    ] and  [     ( )    ]. For 

the sequence spaces   and  , define the set  (    ) by 

 

(   )                              (    )  *  (  )       (    )                +  
 

With the notation of (   ),   dual of a sequence space    is defined by 

 

    (    )  
 

Stieglitz and Tietz [24] gave the following lemmas which are used to arrive at the main 

results. 

 

Lemma 3.1.    (      ) if and only if 

 

(   )                                                 
   

                            

 

(   )                                                          
   

∑        

 

 

 

Lemma 3.2.   (      ) if and only if (   ) and (   ) hold, and  (3.4) 

 

    
   

∑             

 

 

 

Theorem 3.1. Define the sets       and    by 

 



Journal Tri. Math. Soc. Vol. 22(Dec-2020)           ISSN 0972-1320 

61 
 

   {  (  )    (
 

 
0 .    

   
   /1

  
)                         } 

 

   {  (  )    (
 

 
[ (   

   
∑     

 

)]

  

)   } 

 

   {  (  )    (
 

 
[ (   

   
   
   

∑   

 

)]

  

)          } 

 

and define a matrix   (   ) by 

.    ,

                 (   )  
                          (   )
                           (   )

 

 

                         ∑(  ) 
 (   )

   (     )

 

    

 

   

  

 

Then,  {  [     ( )    ]}
 

         and  { [     ( )    ]}
 

          . 

 

Proof. We prove the theorem for the space   [     ( )    ] . Let   (  )    and 

  (  )    [     ( )    ]. Then, we obtain the equality 

 

 

 
[ ∑     

 

   

]

  

 
 

 
[ ∑ (  ∑(  ) 

 (   )

   (     )

 

    

 

   

)

 

   

(           )]

  

 

 

                       
 

 
* ∑ (  ∑(  ) 

 (   )

   (     )

 

    

 

   

)

 

   

(           )+

  

 

 

.  
 

 
0  .   (  ) 

 (   )

   (     )

 

    

 
         (  )  (   )

   (     )

 

      

   
   /   

      

                         .   (  ) 
 (   )

   (     )

 

    

 
   /   1

  

 

                   (  )   
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Then, we deduce that    (    )     whenever   (  )    [     ( )    ] if and only 

if      whenever   (  )    . This means that   (  )  {  [     ( )    ]}
 

 if and 

only if   (    ). Therefore, by using Lemma 3.1, we obtain; 

(
 

 
0 .    

   
   /1

  
)                         (

 

 
[ (   

   
∑     

 

)]

  

)      

 

Hence, we conclude that {  [     ( )    ]}
 

       . 

 

4. Some Matrix Transformations Related to the Sequence Spaces  

  [     ( )    ] and  [     ( )    ] 
 

In this section, we discuss results on various matrix mappings on the spaces 

  [     ( )    ] and   [     ( )    ]. Simply,  we can write 

   ̃                       .
 

 
0  . (  ) 

 (   )

   (     )

   
       /

 
      1

  

/        (4.1) 

 

for all        where  

    (
 

 
* (∑(  ) 

 (   )

   (     )

 

    

 

   

)   +

  

)  

 

Theorem 4.1. Let   be any given sequence space and   *    + . Then,   (   )  

( [     ( )    ]   ) if and only if   (   ) and 

 

                                                                     ( )  (   )                                             (   ) 

 

for every fixed    , where      ̃   and  ( )  (   
( )

) with 

 

(   
( )

)   ,

                    (   )  

                           (   )
                               (   )
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Proof. Let   be any given sequence space. Suppose that (   ) holds between the entries of 

  (   ) and   (   ), and consider that the spaces  [     ( )    ] and   are linearly 

isomorphic. 

 

Let   (   )  ( [     ( )    ]   )  and take any   (  )   . Then    
( )

 exits and 

*   +    ( [     ( )    ])
 
 which yields that (   ) is necessary and *   +       for 

each    . Hence,    exists for each     and thus by letting     in the equality 

 

 

 
[ (∑      

 

   

)]

  

 
 

 
[ (∑(          

   

   

)        )]

  

 (      ) 

 

we have that        and so we have that   (   ). 

 

Conversely, suppose that   (   )  and (   ) hold, and let   (  )   [     ( )    ]. 

Then, we get *   +         which together with (   )  gives 

*   +    ( [     ( )    ])
 

 for each    . Thus,    exists. Therefore, from the 

equality we obtain  

 

 

 
[ (∑      

 

   

)]

  

 
 

 
* ∑ (∑(∑(  ) 

 (   )

   (     )

   

   

    )

 

   

   )  

 

   

+

  

 

 

for all    , as     that         and this proves  that   ( [     ( )    ]     ). 

This completes the proof. 

 

Theorem 4.2.  Suppose that the entries of the infinite matrices   (   )  and   (   ) 

are connected with the relation (   ) and   be given sequence space and   *    +. Then 

  (   )  (    [     ( )    ]) if and only if   (   )  (   ).  

 

Proof. Let   (  )     and consider the following equality with (   ) 

 

.
 

 
, (      

 
   )-   

 

 
0  . . (  ) 

 (   )

   (     )

   
       /

 
      /   

 
   1

  
(      )  
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which yields as     that (  )  ,  
( )

(  )- . Hence, we obtain that 

    [     ( )    ] whenever     if and only if       whenever    . 

 

We will have several consequences by using Theorem     and Theorem    . But we must 

give firstly some relations which are important for consequences: 

 

                                                         
   

         .                                                         (   ) 

 

                                             
   

                                .                            (   ) 

 

                                           
   

                                                               (   ) 

 

                                                                                                                          (   ) 

                                                                                                                                (   ) 
  

                                                     
   

                                                                 (   ) 

 

                                                           
   

         .                                                        (   ) 

 

                                                          
   

                                                                     (    ) 

  

                                               
   

              .                                                          (    ) 

 

 

Now, we can give the corollaries. 

 

Corollary 4.3. The following statements hold: 

( )    (   )  (  [     ( )    ]     )  ( [     ( )    ]     ) if and only if (   ) 

holds with  ̃   instead of     and (   ) also holds. 

(  )   (   )  (  [     ( )    ]    ) if and only if (   ) and (   ) hold with  ̃   instead 

of     and (   ) also holds. 

(   )   (   )  (  [     ( )    ]     )  if and only if (   )  and (   )  hold with  ̃   

instead of     and (   ) also holds. 

(  )    (   )  ( [     ( )    ]    ) if and only if (   ) (   ) and (   ) hold with  ̃   

instead of     and (   ) also holds. 
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( )   (   )  ( [     ( )    ]     ) if and only if (   ) (   ) and (   ) hold with  ̃   

instead of      and (4.2) also holds. 

(  )    (   )  (  [     ( )    ]    )  ( [     ( )    ]    )  if and only if 

(   ) holds with  ̃   instead of      and (   ) also holds. 

 

Corollary 4.4. The following statements hold: 

( )    (   )  (      [     ( )    ]) if and only if (   )  hold with      instead of 

   . 

(  )   (   )  (     [     ( )    ]) if and only if (   ) (   ) and (   ) hold with      

instead of    . 

(   )   (   )  (      [     ( )    ])  if and only if (   )  and (   )   hold with     

instead of     . 

(  )   (   )  (    [     ( )    ])  if and only if (   )  and (    )  hold with     

instead of     . 

( )   (   )  (    [     ( )    ])  if and only if (   )  and (    )  hold with     

instead of     . 

(  )   (   )  (   [     ( )    ]) if and only if (   ) (   ) and (   ) hold with     

instead of     . 

(   )   (   )  (    [     ( )    ])  if and only if (   )  and (   )  hold with      

instead of     . 

(    )   (   )  (    [     ( )    ])  if and only if (   )  and (    )  hold with      

instead of     . 
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Abstract 

The aim of this paper is to generalize the concept of compactness in neutrosophic minimal 

spaces. We shall introduce neutrosophic m-compactness in neutrosophic minimal spaces and 

some related basic results in this new setting would be investigated. Further, the concept of 

neutrosophic countably m-compactness would be introduced in neutrosophic minimal spaces 

and some of its basic properties would be studied.   
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1. Introduction: 

 

Zadeh [18] introduced the notion of fuzzy set in the year 1965. Uncertainty plays an 

important role in our everyday life problems. Zadeh associated the membership value with 

the elements to control the uncertainty. It was not sufficient to control uncertainty, so 

Atanaosv [4] added non-membership value along with the membership value and introduced 

the notion of intuitionistic set. Still it was difficult to handle all types of problems under 

uncertainty, in particular for problems on decision making. In order to overcome this 

difficulty, Smarandache [15] considered the elements with membership, nonmembership and 

indeterministic values and introduced the notion of neutrosophic set. The concept of 

neutrosophic set has been applied in many branches of science and technology. Das et al. [6] 

have studied algebraic operations neutrosophic fuzzy matrices, Das and Tripathy [5] have 

investigated different properties of neutrosophic multi set topological space. Salama et al. 

[14] have studied neneutrosophic crisp topological space. 

 

The notion of neutrosophic topological space was first introduced by Salama and Alblowi 

[12], followed by Salama and Alblowi [13]. The notion of minimal structure in topological 
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space was introduced by Makai et al. [9]. It is found to have useful applications and the 

notion was investigated by Madok [10]. The notion of minimal structure in a fuzzy 

topological space was introduce by Alimohammady and Roohi [1] and further investigated by 

Tripathy and Debnath [16] and others [7, 8, 11, 17]. Arokiaranil et al [3] extended minimal 

structures to fuzzy minimal structures and established some results in this setting. 

Alimohammady and Roohi [2] introduced compactness in fuzzy minimal spaces. 

  

2. Preliminaries: 

 

Definition 2.1.Let X be an universal set. A neutrosophicsetA in X is a set contains triplet 

having truthness, falseness and indeterminacy membership values that can be characterized 

independently, denoted by TA, FA, IA in [0,1]. The neutrosophic set is denoted as follows: 

 

A = {(x, TA(x), FA(x), IA(x)): xX, andTA(x), FA(x), IA(x)[0,1] }. 

 

There is no restriction on the sum of TA(x), FA(x) and IA(x), so  

    0 TA(x) + FA(x) + IA(x) 3. 

 

Throughout, we denote aneutrosophic set A byA={(x, TA(x), FA(x), IA(x)): xX, andTA (x), 

FA(x), IA(x) [0,1]}. 

 

The null and full NSs on a nonempty set X are denoted by0N and 1N, defined as follows: 

 

Definition 2.2. The neutrosophic sets 0N and 1N in X are represented as follows:  

(i) 0N = {<x, 0, 0, 1>: xX}. 

(ii) 0N = {<x, 0, 1, 1 >: xX }. 

(iii) 0N = {<x, 0, 1, 0 >: xX }. 

(iv) 0N = {<x, 0, 0, 0 >: xX }. 

(v) 1N = {<x, 1, 0, 0 >: xX }. 

(vi) 1N = {<x, 1, 0, 1 >: xX }. 

(vii) 1N = {<x, 1, 1, 0 >: xX }. 

(viii) 1N = {<x, 1, 1, 1 >: X }. 

 

Clearly, 0N1N.We have, for any neutrosophic set A,0NA1N. 

 

Now we procure the basic operations on neutrosophic sets, those will be used throughout the 

article. 
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Definition 2.3. Let A = (x, TA, FA, IA) be a NS over X, then the complement of A is defined by 

A
c
={(x,1-TA(x),1-FA(x),1-IA(x)): xX }. 

 

Definition 2.4. A neutrosophic set A = (x, TA, FA, IA)  is contained in the other neutrosophic 

set B = (x, TB, FB, IB) (i.e. AB) if and only if TA(x) TB(x), FA(x) FB(x), IA(x) IB(x), for each 

xX. 

 

Definition 2.5. If A = (x, TA, FA, IA) and B=(x, TB, FB, IB) are any two NSs over X, then AB 

and AB is defined by 

AB ={(x,TA(x)V TB(x), FA(x)FB(x), IA(x)IB (x)): xX}. 

AB ={(x, TA(x) TB (x), FA(x)V FB(x), IA(x)V IB (x)): xX}. 

 

The neutrosophic topological space is defined as follows: 

 

Definition 2.6.Let X be a non-empty set and  be the collection of neutrosophic subsets of X 

then  is said to be a neutrosophic topology (in short NT) on X if the following properties 

holds: 

(i) 0N,1N. 

(ii) U1,U2U1 U2. 

(iii) iui, for every {ui: i}. 

 

Then (X,) is called a neutrosophic topological space (in short NTS) over X. The members of 

 are called neutrosophic open sets (in short NOS). A neutrosophic set D is 

calledneutrosophic closed set (in short NCS) if and only if  D
c
 is a neutrosophic open set.  

 

The neutrosophic interior and neutrosophic closure of a neutrosophic set is defined as 

follows: 

 

Definition 2.7. Let (X,) be a NTS and U be a NS in X. Then the neutrosophic interior (in 

short Nint) and neutrosophic closure (in short Ncl) of U are defined by  

 

Nint(U) = {E : E is a NOS in X and EU}, 

Ncl(U) = {F : F is a NCS in X and UF}. 

 

Remark 2.8.Clearly Nint(U) is the largest neutrosophic open set over X which is contained in 

U and Ncl(U) is the smallest neutrosophic closed set over X which contains U.  

 

Proposition 2.9. For any NSB in (X,) we have 
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        (i) Nint(B
c
) = (Ncl(B))

c
. 

       (ii) Ncl(B
c
) = (Nint(B))

c
. 

 

Definition 2.10. Let (X,) be a neutrosophic topological space and G be a neutrosophic set 

over X. Then G is called, 

(i) Neutrosophic semi-open (in short NSO) set if and only if GNcl(Nint(G)); 

(ii) Neutrosophic pre-open (in short NPO) set if and only if GNint(Ncl(G)). 

 

3. Neutrosophic m-compact space 

Definition 3.1. Suppose (X, ℳ) is a neutrosophic minimal space and A = {    : jJ } is a 

family of neutrosophic sets in X. A is called a neutrosophic cover of X if ⋁     = 1N. Also A 

is called a neutrosophic set B in X if B  ⋁    . It is a neutrosophic m-open cover if each   is 

neutrosophic m-open. A neutrosophic subcover of A is a subfamily of it which is a 

neutrosophic cover too. 

Definition 3.2. Suppose (X, ℳ) is a neutrosophic minimal space. A neutrosophic set B in X 

is said to be neutrosophic m-compact if every neutrosophic m-open cover A = {    : jJ } of 

B has a finite fuzzy subcover. Also Y  X is called neutrosophic m-compact if    
 is a 

neutrosophic m-compact set. 

Definition 3.3. A family A = {   : jJ} of neutrosophic sets in X has finite intersection 

property if each finite subfamily of {   : jJ} has non-empty intersection. 

Theorem 3.4. A neutrosophic minimal space (X, ℳ) is neutrosophic m-compact iff ⋀     

   for any family {   : jJ} of neutrosophic m-closed sets in X which has the finite 

intersection property. 

Proof. Suppose {    : jJ } is neutrosophic m-open cover of X. If ⋁       
   1N for any 

choice       ,………,   J, then ⋀   
    

   0N. Now from the assumption ⋀   
     ,  that 

is 

 ⋁       1N, which is a contradiction. 

Conversely, suppose {   : jJ} is a family of neutrosophic m-closed sets which satisfy in 

finite intersection property. If  ⋀   
     , then ⋁   

     , by the assumption there exist 

       ,………,   J such that ⋁   
     

  
1N ;i.e. ⋁         

    which is impossible. 
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Theorem 3.5. A neutrosophic space (X, ℳ) is neutrosophic B-compact if and only if every 

collection {   : jJ} of neutrosophic B-closed sets of X having the finite intersection 

property, ⋀          . 

Proof. Since the family of all neutrosophic B-open sets forms a neutrosophic minimal 

structure on X, so it follows from Theorem 3.4. 

Definition 3.6. A family B of neutrosophic sets in a neutrosophic minimal space (X, ℳ) is 

called a neutrosophic filter base if  ⋁         for any finite subfamily F  B .  

Theorem 3.7. A neutrosophic minimal space (X, ℳ) is neutrosophic m-compact if and only 

if ˄B B m-cl(B) ≠    for every neutrosophic filter base B in X. 

Proof. Suppose {   : jJ} is a family of neutrosophic m-closed sets which satisfy in finite 

intersection property. It is easy to see that {   : jJ} is neutrosophic filter base for X,  now by 

the assumption ⋀     (  )  ⋀ (  )      . That is X is neutrosophic m-compact follows 

from theorem Theorem 3.4. 

Conversely, suppose there is a neutrosophic filter base {   : jJ} such that ⋀     (  )   

  . 

From definition of m-closure, we can write     (  )  ⋀        , where       ’s are   -

closed and          , k is index set   . Then ⋀ ⋀            , so ⋀ ⋀   
          . 

From neutrosophic m-compactness of X, we have ⋁         
  

       so, ⋀            
 
   . 

Since     (   )  ⋀                     , so ⋀     (   )    
 
   . Therefore, {   : jJ} 

has non-empty finite intersection property. 

Theorem 3.8. Suppose    (X, ℳ) ⟶(X, Ν) is neutrosophic m-continuous. If A is 

neutrosophic m-compact set, then  (A) is neutrosophic m-compact set too. 

Proof. Let {   : jJ} be a family of neutrosophic m-open sets in Y which satisfy in       

⋁    . Since,                 ⋁     ⋁    (  )        f is neutrosophic m-

continuous and A is neutrosophic m-compact set, there exist        ,………,   J such that 

A  ⋁         
 
   , i.e.       ⋁      

 
    Consequently,            ⋁        

   

⋁    
 
     which it completes the proof. 

Definition 3.9. A function     ⟶   is said to be neutrosophic MB-continuous if the 

inverse image of every neutrosophic B-open set in Y is neutrosophic B-open set in X. 
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Theorem 3.10. Suppose (X, ℳ) is a neutrosophic m-compact and    (X, ℳ) ⟶(Y, N) is a 

surjective neutrosophic m-compact. Then Y is neutrosophic m-compact. 

Proof. Since f is onto we have f(      , now applying Theorem 3.8. 

Definition 3.11. A function    (X, ℳ) ⟶(Y, N) is called neutrosophic m-open if f(A)  N  

for each A  ℳ. 

Corollary 3.12. Suppose    (X, ℳ) ⟶(X, N) is bijective and nutrosophic m-open. Then Y 

is neutrosophic m-compact whenever X is neutrosophic m-compact. 

Proof. It is easy to see that     is neutrosophic m-continuous and onto. Now apply Theorem 

3.10. 

Theorem 3.13. Suppose neutrosophic minimal space (X, ℳ) is neutrosophic m-compact if 

and only if every neutrosophic m-open cover has a finite  o-partition. 

Proof. Suppose, A = {    : jJ } is a neutrosophic m-open cover of X. Since, X is 

neutrosophic m-compact, A has a finite subcover, say A0 = {Ai : I = 1,2,        , n} and 

so     
       . Therefore, A0 is a o-partition of X and since A0 is a subfamily of A, then A0 is 

o-partition of X by A.  . 

Conversely, suppose that every neutrosophic m-open cover of X has a finite o-partition. 

Hence any neutrosophic m-open cover A = {    : jJ } has a finite o-partition {       

           Let    be a neutrosophic set in correspondence of     . Now it is easy to see that {Ai 

: i = 1,2, . . ., n} is a finite subfamily of A which is also a neutrosophic cover of X. 

Corollary 3.14. Suppose (X, ℳ) is a neutrosophic minimal space. X is not neutrosophic m-

compact if there exist a neotrosophic m-open cover A of X and a point xX with         

for all    A   . 

Proof. Obvious, so left. 
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Abstract: We shall study         which is the warped product of an open interval    and a 

Riemannian manifold   of constant sectional curvature k. 

 

1. Introduction 

Suppose   and   are semi Riemannian manifolds and let     be a smooth function of  . 

The Warped product        is the product manifold     furnished with metric 

tensor, 

                                                                                                   (1.1) 

where   and   are the projections of     onto   and  , respectively. Here   is called 

warping function. Explicitly, if   is a tangent to     at       then, 

                                              (           )                    (1.2) 

 

An important example in this class is the Roberson-Walker space-times: 

                                             
       (      

 
)                                              (1.3) 

Where,   
 
                

An   dimensional generalized Robertson-Walker spacetime with     is a Lorentzian 

manifold which is a warped product manifold      of an open interval   of the real line 

  and a Riemannian       manifold        endowed with the Lorentzian metric, 

                                                 
              

                                               (1.4) 
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where    and    denote the projections onto   and  , respectively, and   is a positive smooth 

function on  . In a classical Robertson-Walker(RW) spacetime, the fiber is three dimensional 

and of constant sectional curvature, and the warping function   is arbitrary. 

On the Warped product              , let   be an arclength parameter of  . Denote by 

   the lift   of the standard vector field      on   to     . So we have        .      is 

similarly defined that is        means   is the lift of some vector say    in   to     . 

2. Preliminaries 

We assume the following two lemmas from [1]. 

Lemma 2.1. For         , we have 

(1)  ̃  
     

(2)  ̃  
    ̃            

(3)   ̃                      

Lemma 2.2. For           , the curvature tensor  ̃ of         satisfies 

 ̃         
   

 
 ,  ̃              

   

 
   ,  ̃          

 

and  ̃       
     

                                                                     (2.1) 

 

3. Some Results for Submanifolds in         

For a vector field   on          we decompose   into a sum 

                                                    ̂                                                     (3.1) 

where            and  ̂ is the vertical component of   that is orthogonal to   . 
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Let            be a local orthonormal frame field on    From      , we have, 

                                                   ̂                                                     (3.2) 

where                    

Then using (3.2) in lemma (2.1) we get 

 ̃(     )   (            )
   

 
        

   

 
  

       

  
             ̂  

                                 {    
   

 
   

       

             }  ̂                                     (3.3) 

Theorem 3.1 The Ricci tensor of         is given by 

           (        
 

  
)      (     (

     

  )   (∑  
 )         

 

  
)    

                                                                                                                                            (3.4) 

Proof: Contracting (3.3) with respect to   , we have 

 ( (     )     )   (            )
   

 
              

   

 
 

  
       

  
            ( ̂    ) 

 {    

   

 
   

       

  
            }    ̂      

that is 

     (            )
   

 
         

      

   

 
  

       

  
             ( ̂    ) 
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 {    

   

 
   

       

  
            }    ̂      

 

and simplifying we get the required result. 

Theorem 3.2. For            and        , 

                                    (   
 )                                                                 (3.5) 

Proof: We have, 

(   
 )          

             
      

                                                                     (     
 )           

                          (3.6) 

that is, 

(   
 )                                   

                                                                                                               (3.7) 

which on simplifying we get the required result. 

 

Let   be a submanifold of        . If  ̃  and   are Levi Cevita connections on         

and   respectively, then the second fundamental form  , on   is defined as 

                                                            ̃                                                      (3.8) 

 

Theorem 3.3. If      ̃        then 

                                                ̃(         )   
   

 
                                             (3.9) 

 

Proof: For any        we have 
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                                                 ̃         
   

 
                                                     (3.10) 

Hence, 

                                               ̃(    ̃  )   
   

 
  ̃                                              (3.11) 

and 

                                             ̃           
   

 
                                                 (3.12) 

From the linearity of  ̃ taking the difference of (3.11),(3.12) gives the required result. 

 

Theorem 3.4. If         is symmetric, and    non constant, then for any submanifold  , 

the second fundamental form maps (        )  (        ) to    
       

Proof:  We have from theorem (3.3), 

For      ̃        , 

                                      ̃(         )   
   

 
        .                                   (3.13) 

Differentiating covariantly with respect to  , we get 

   ̃(         )   
   

 
          

That is,     ̃ (         )     ̃(           )   

   ̃(           )     ̃(         )      
   

 
          

Using lemma (2.1)  we get 

    ̃ (         )     ̃(              )   

   ̃(           )     ̃(         )         
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Now using lemma (2.2) we get 

    ̃ (         )     ̃(              )   

 
   

 
           ̃(         )         

   

 
          

which on simplifying we get 

    ̃ (         )     ̃(              )     ̃(         )         . 

Further from lemma (2.2) we have   ̃           which implies 

    ̃ (         )     ̃(         )          

    This gives, 

   ( ̃  ̃)(         )                   
   

 
                        (3.14) 

If         is symmetric, then ( ̃  ̃)    and hence  

              

Which implies h maps (        )  (        ) to    
      . 
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Abstract 

 

The aim of this paper is to introduce the concept of intuitionistic fuzzy δ –semiopen sets. 

Some of its basic properties would be investigated in intuitionistic fuzzy setting. Different 

know properties of fuzzy sets would be generalized with the help of this new concepts. Some 

characterization theorems would also be obtained in intuitionistic fuzzy topological spaces.  

 

Key words: Intuitionistic fuzzy open sets, intuitionistic fuzzy topology, intuitionistic fuzzy δ 

– semiopen sets.  

1. Introduction 

Zadeh [10] introduced the notion of fuzzy sets. There after several researches contributed 

themselves on the generalizations of the notion of fuzzy sets. Chang [3] introduced the 

concept of fuzzy topological spaces. Azad [2] introduced the concept of fuzzy semi 

continuity in fuzzy setting. Atanassov [1] introduced the notion of intuitionistic fuzzy sets as 

a generalization of fuzzy sets. Coker [4] introduced the notion of intuitionistic fuzzy 

topological spaces using the notion of intuitionistic fuzzy sets. After that many researchers [5, 

6] introduced different types of intuitionistic fuzzy sets. In section 2, some known definitions 

and results would be mentioned as ready reference. In section 3, the concept of a new class of 

sets, called - intuitionistic fuzzy δ – semiopen sets is to be introduced and some of their basic 

properties are to obtained.  

 

2. Preliminaries 

In this section, some known definitions and results are to be mentioned as ready reference. 

Definition 2.1. [1] An intuitionistic fuzzy set (IFS, in short) A in X is an object having the 

form 

 A = {(x, μA(x), νA(x)) : x X} 
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where the function μA(x) : X→[0, 1] and νA(x)} :  X→[0, 1] denote the degree of membership 

(namely, μA(x)) and the degree of non-membership (namely, νA(x)) of each element x X to 

the set A, respectively and 0 ≤ μA(x) + νA(x) ≤ 1 for each  x X. Denote by IFS(X), the set of 

all intuitionistic fuzzy sets in X.   

Definition 2.2. [1] Let A and B be IFSs of the form A = {x, μA(x), νA(x)} : x X}and B = {x, 

μB(x), νB(x)} : x X}. Then 

(i) A ≤ B if and only if μA(x) ≤ μB(x) and νA(x) ≥ νB(x) for all x X, 

(ii) A= B if and only if A≤B and B≤A, 

(iii) Ac
 ={(x, νA(x), μA(x))} : x X}, 

(iv)  A˄B = {x, μA(x)˄μB(x), νA(x)˅νB(x)} : x X}, 

(v) A B={x, μA(x)˅μB(x), νA(x)˄νB(x)} : x X}. 

For the sake of simplicity, we shall use the notation A=(x, μA, νA) instead of A={(x, μA(x), 

νA(x)) : x X}. Also, for the sake of simplicity, we shall use the notation A={(x, (μA, μB))} 

instead of A={(x, (μA(x), νA(x)) : x X}. 

The intuitionistic fuzzy sets    = {(X, 0, 1) : x X} and    ={(X, 1, 0) : x X}are respectively 

called the empty set and the whole set of X. 

Definition 2.3. [4] An intuitionistic fuzzy topology (IFT, in short) on X is a family τ of IFSs 

in X satisfying the following axioms : 

(i)   ,      

(ii) G1˄G2   for any G1, G2   

(iii)  Gi   for any family {Gi     }≤   

In this case, the pair (X,  ) is called an intuitionistic fuzzy topological space (IFTS, in short) 

and any IFS in   is known as an intuitionistic fuzzy open set (IFOS, in short) in X.  

The complement A
c
 of an IFOS A in IFTS (X,  ) is called an intuitionistic fuzzy closed set 

(IFCS, in short) in X. 

 

 Definition 2.4. [4] Let (X,  ) be an intuitionistic fuzzy topological space (IFTS) and A=(x, 

μA, νA) be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure 

are defined by 

int(A) =  {G : G is an IFOS in X and G ≤  } 

cl(A) =  {K : K is an IFCS in X and A ≤  } 

Note that for any IFS A in (X,  ), we have cl(A
c
) = [(int(A))]

c
 and int(A

c
) = [(cl(A))]

c
. 
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Definition 2.5. An IFS A= {(x, μA, νA)} in an IFTS (X,  ) is said to be an  

(i) [7] intuitionistic fuzzy semiopen set (IFSOS, in short) if A≤         )), 

(ii) [9] intuitionistic fuzzy α-open set (IFαOS, in short) if A≤             ))), 

(iii) ]7] intuitionistic fuzzy regular open set (IFROS, in short) if A=         )), 

(iv) [7] intuitinistic fuzzy preopen set (IFPOS, in short)) if A≤         ))), 

(v) [8] intuitinistic fuzzy γ - open set (IF γOS, in short)) if A≤         ))         )). 

The family of all IFOS (respectively IFSOS, IFαOS, IFROS, IFPOS, IF γOS) of an IFTS (X, 

 ) is denoted by IFO(X) (respectively IFSO(X), IFαO(X), IFRO(X), IFPOS(X), IF γOS(X)). 

Definition 2.6. An IFS A = (x, μA, νA) in an IFTS (X,  ) is said to be an   

(i) [7] intuitionistic fuzzy semiclosed set (IFSCS, in short) if int(cl(A)) ≤ A, 

(ii) [9] intuitionistic fuzzy α-closed set (IFαCS, in short) if cl(int(cl(A))) 

≤             )))  
(iii) [7] intuitionistic fuzzy regular closed set (IFRCS, in short) if A=cl(int(A)), 

(iv) [7] intuitinistic fuzzy preclosed set (IFPCS, in short)) if cl(int(A)) ≤    

(v) [8] intuitinistic fuzzy γ - closed set (IF γCS, in short)) if         ))  

        ))   . 

The family of all IFCS (respectively IFSCS, IFαCS, IFRCS, IFPCS, IF γCS) of an IFTS (X, 

 ) is denoted by IFC(X) (respectively IFSC(X), IFαC(X), IFRC(X), IFPCS(X), IF γCS(X)). 

Definition 2.7. [7] Let A be an IFS in an IFTS (X,  ). Then semi interior of A (sint(A), in 

short) and semi closure of A (scl(A), in short) are defined as 

sint(A) =  {G: G is an IFSOS in X and G    } 

and scl(A) =  {K: K is an IFSCS in X and A   }. 

3. Intuitionistic fuzzy δ – semiopen sets 

In this section, the concept of a new kind of set, known as intuitionistic fuzzy δ – semiopen 

set is to be introduced. Some of its basic properties are also to be investigated. 

Definition 3.1. An IFS A in an IFTS (X, τ) is said to be  

(i) an intuitionistic fuzzy δ – semiopen (IFδSO) set of X if A ≤ cl(δint(A)) or 

equivalently there exists an intuitionistic fuzzy δ – open (IFδO) set B   τ  such 

that B ≤ A ≤ δcl(B), 
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(ii) an intuitionistic fuzzy δ – semiclosed (IFδSC) set of X if there exists an 

intuitionistic fuzzy δ – closed (IFδC) set B        )  such that δint(B) ≤ A ≤ B. 

It can be easily shown that δ – closure of an IFO (IFC) set of     ) is IFδSO (IFδSC).  

Remark 3.2. It is obvious that every IFδO (IFδC) set in an IFTS (X, τ) is IFδSO (IFδSC) set 

but the converse is not true.  

We denote the family of all intuitionistic fuzzy δ – semiopen sets and intuitionistic fuzzy δ – 

semiclosed sets by ψ(X) and ψ (X) respectively.  

Definition 3.3. An IFS A in an IFTS (X, τ) is said to be an intuitionistic fuzzy regular δ –

open set if int(δcl(A)) = A. 

The complement of an intuitionistic fuzzy regular δ – open set is called intuitionistic fuzzy 

regular δ – closed set. 

Definition 3.4. Let A be an IFS in an IFTS (X, τ). Then  

(i) δsintA = ˅ {B : B             } is called intuitionistic fuzzy δ – semi 

interior of A and 

(ii) δsclA =    ˄{B : B        ,     } is called intuitionistic fuzzy δ – semi 

closure of A. 

Remark 3.5. From the above definitions, we have the following relations : 

(i) δscl(A
c
) =  (δsintA)

c 
 

(ii) (δscl(A)
c
 =  δsint(A

c
). 

Remark 3.6. For any IFS U, U is an intuitionistic fuzzy δ – semi open set if and only if 

δsintU = U because U is an intuitionistic fuzzy δ – semi open set if and only if U
c
 is an 

intuitionistic fuzzy δ – semi closed set, i.e., if and only if U
c
 = δscl(U

c
), i.e., if and only if U = 

(δscl(U
c
))

c
 =  δsint(U).  

Definition 3.7. An IFS A in an IFTS (X, τ) is called an intuitionistic fuzzy δ – semi nbd of a 

fuzzy point xp if there exists a fuzzy set U         such that xp    ≤ A. 

We denote the set of all intuitionistic fuzzy δ – semi nbds of a fuzzy point xp by ξ(xp). 

 

Definition 3.8. An IFS A in an IFTS (X, τ) is called an intuitionistic fuzzy δ – semi q - nbd of 

a fuzzy point xp if there exists a fuzzy set U         such that xp q   ≤ A. 
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We denote the set of all intuitionistic fuzzy δ – semi q - nbds of a fuzzy point xp by η(xp). 

Theorem 3.9. (a) The union of any collection of intuitionistic fuzzy δ – semiopen sets in an 

IFTS (X, τ) is also intuitionistic fuzzy δ – semiopen set. 

 

(b) The intersection of any collection of intuitionistic fuzzy δ – semiclosed sets in an 

IFTS (X, τ) is also intuitionistic fuzzy δ – semiclosed set. 

 

Proof. (a) Let {Ai : i   }be a collection of intuitionistic fuzzy δ – semiopen sets in an IFTS 

(X, τ). Then Ai ≤ cl(δint(Ai)) for each i. Now ˅Ai ≤ ˅cl(δint(Ai)) Ai ≤ cl(δint(˅Ai)). This 

shows that ˅Ai is an intuitionistic fuzzy δ – semiopen set. 

(b) Let {Ai : i   }be a collection of intuitionistic fuzzy δ – semiopen sets in an IFTS (X, τ). 

Then by (a), ˅Ai is an intuitionistic fuzzy δ – semiopen sets. Therefore (˅Ai)
c
 is an 

intuitionistic fuzzy δ – semiclosed set. Thus, ˄(Ai)
c
 is an intuitionistic fuzzy δ – semiclosed 

set. But (Ai)
c
 is an intuitionistic fuzzy δ – semiclosed set as Ai is a fuzzy δ – semiopen set. 

Thus, any collection of intuitionistic fuzzy δ – semiclosed sets in an IFTS (X, τ) is also 

intuitionistic fuzzy δ – semiclosed set. 

 

Theorem 3.10. A fuzzy set A         if and only if every intuitionistic fuzzy point xp   A, 

there exists a fuzzy set B         such that xp q   ≤ A. 

 

Proof. If A       , then we may take B = A, for every xp   A. Conversely, we have A = ˅{ 

xp} ≤ ˅B ≤ A, for every xp   A. The result now follows from the fact that any union of 

intuitionistic fuzzy δ – semiopen sets is intuitionistic fuzzy δ – semiopen set. 

 

Theorem 3.11. A fuzzy set A         if and only if every intuitionistic fuzzy point xp   A, 

A is an intuitionistic fuzzy δ – semi prenbd of xp. 

 

Proof. Obvious. 

 

Theorem 3.12. Let A be an intuitionistic fuzzy set of an IFTS (X, τ). Then an intuitionistic 

fuzzy point xp   intδsclA if and only if every intuitionistic fuzzy δ – semi pre q - nbd of xp is 

quasicoincident with A. 

 

Proof. Necessity. Suppose that xp   intδsclA and if possible, let there exists a fuzzy δ – semi 

pre q - nbd B of xp such that B q A. Then there exists a fuzzy set B1        such that xp q 
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B1 ≤ B1 ≤ B, which shows that B1 q A and hence A≤ B1
c
. As B1

c        , intδsclA≤ B1
c
. 

Since xp   B1
c
, we obtain that xp          , which is a contradiction. 

 

Sufficiency. Suppose that every intuitioistic fuzzy δ – semi q – nbd of xp is quasicoincident 

with A. If xp            then there exists an intuitionistic fuzzy δ – semiclosed set B ≥ A 

such that xp     So B
c
         such that xp q B

c
 and B

c
 q A, a contradiction. 

 

Theorem 3.13. Let U and V be two IF sets in an IFTS (X, τ). Then we have the following 

properties : 

(a) δscl(0∼) = 0∼ 

(b) U ≤ δscl(U) 

(c) U ≤ V   δscl(U) ≤ δscl(V) 

(d) δscl(U) ˅ δscl(V) = δscl(U ˅ V) 

(e) δscl(U ˄ V) ≤ δscl(U) ˄ δscl(V). 

 

Proof. (a) Obvious 

(b) Since U ≤ cl(U) ≤ scl(U) ≤ δscl(U) 

Therefore U) ≤ δscl(U). 

(c) Let x(α, β) be an IF point in X such that x(α, β)        ). Then there is an IF regular open q – 

nbd A of x(α, β) such that A q V. Since U ≤ V, we have A q U. Therefore x(α, β)        ). 

(d) Since U ≤ (U ˅ V), δscl(U) ≤ δscl(U ˅ V). Similarly, δscl(V) ≤ δscl(U ˅ V). Hence 

δscl(U) ˅ δscl(V) ≤ δscl(U ˅ V). To show that δscl(U ˅ V) ≤ δscl(U) ˅ δscl(V), take any x(α, β) 

  δscl(U ˅ V).Then for any IF regular open q – nbd of A of x(α, β), Aq(U ˅ V). Hence AqU or 

AqV. Therefore, x(α, β)   δscl(U) or x(α, β)   δscl(V). Hence x(α, β)   δscl(U) ˅ δscl(V). 

(e) Since U ˄ V ≤ U, δscl(U ˄ V) ≤ δscl(U). Similarly, δscl(U ˄ V) ≤ δscl(V). Therefore, 

δscl(U ˄ V) ≤ δscl(U) ˄ δscl(V). 

 

Lemma 3.14. (a) For any IF set U in an IFT (X, τ),  int(δcl(U)) is an IF regular δ - open set. 

(b) For any IF open set U in an IFT (X, τ) such that x(α, β) q U, int(δcl(U)) is an IF regular 

δ - open q – nbd of x(α, β). 

 

Proof. (a) It is enough to show that int(δcl(U)) = int(δcl(int(δcl(U))). Since int(δcl(U)) ≤ 

δcl(int(δcl(U))), we have int(int(δcl(U))) ≤ int(δcl(int(δcl(U)))). Thus int(δcl(U)) ≤ 

int(δcl(int(δcl(U)))). Conversely, since int(δcl(U)) ≤ δcl(U), we have δcl(int(δcl(U)) ≤ 
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δcl(δcl(U)) = δcl(U). Thus, int(δcl(int(δcl(U))) ≤ int(δcl(U)). Hence int(δcl(U)) is an IF 

regular δ - open set. 

(b) Clearly int(U) ≤ int(δcl(U)). Since U is an IF open set, we have 

             U = int(U) ≤ int(δcl(U)). 

By (a), int(δcl(U)) is an IF regular δ - open set. Therefore, int(δcl(U)) is an IF regular δ - 

open q – nbd of x(α, β). 

 

Theorem 3.15. Let U and V be two IF sets in an IFTS (X, τ). Then we have the following 

properties : 

(a) δsint(1∼) = 1∼ 

(b) δsint(U) ≤ U, 

(c) U ≤ V   δsint(U) ≤ δsint(V), 

(d) δsint(U) ˅ δsint(V) ≤ δsint(U ˅ V), 

(e) δsint(U ˄ V) = δsint(U) ˄ δsint(V). 

 

Theorem 3.16. If U is an IF δ - semiopen set in an IFT (X, τ), the IF closure and IF δ – 

closure of U are the same, i.e., cl(U) = δcl(U). 

 

Theorem 3.17. Let (X, τ) be an IFTS. Then the followings are equivalent : 

(a) A is IFδSC set 

(b)  ̅ is IFδSO set 

(c) intδcl(A) ≤ A 

(d) clδint( ̅)   ̅ 

 

Proof.  (a)   (b). By definition there exists an intuitionistic fuzzy δ – closed (IFδC) set B      

       )  such that int(B) ≤ A ≤ B. This implies,     ̅̅ ̅̅ ̅̅     ̅    ̅. Using proposition 3.15 of 

D.Coker [7], we get,  ̅ ≤  ̅ ≤ cl( )̅̅̅̅  where  ̅ is an IFδO set in     )  Therefore,  ̅ is IFδSO 

set    in     )  
(b)   (a).Similar. 

(a)    (c). By definition there exists an intuitionistic fuzzy δ – closed (IFδC) set B    

       )  such that int(B) ≤ A ≤ B. Using proposition 3.16 of D. Coker [7], we get, int(B) 

≤ A ≤ cl( ) ≤ B. Since int(B) is the largest IFδO set contained in B, we have intδcl(A) ≤ 

int(B) ≤ A, i.e. intδcl(A) ≤ A. 

(c)   (a).It follows by taking   = δ𝑐𝑙( ) i.e,    ( ) ≤  . Also we know that   ≤ δ𝑐𝑙   =   

and hence ( ) ≤   ≤  , as   = δ( ) is a closed set, therefore   is IFδSC.  

      (b)  (d) can similarly be proved.   
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Theorem 3.18. Union of a finite number of IFδSO sets is a IFδSO set and intersection of                  

a finite number of IFδSC sets is a IFδSC. 

 

Proof. 1st part. Let  1,  2,………., be IFδSO sets of (𝑋,𝜏). Then their exist IFδO sets    1, 

 2,……….., of (𝑋,𝜏) such that    ≤    ≤ δ𝑐𝑙   ,   = 1, 2,...., . Generalizing the idea of 

proposition 3.16, D.Coker[7], we get, ⋃   ≤ ⋃   ≤⋃δ𝑐𝑙    = δ𝑐𝑙(⋃  ). Also ⋃     𝜏, Hence  

⋃   is IFδSO.  

 

        2nd part.     Similar. 
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ABSRACT: In this paper we have introduced the notion of quasi Cauchy sequence of 
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1. PRILIMIRARIES AND BACKGROUND 

 

    Interval arithmetic was first suggested by Dwyer [5] in 1951. Thereafter the concept has 

been studied by Moore [10] and applied in different fields. Chiao in [3] introduced sequence 

of interval numbers and defined usual convergence of sequences of interval number. 

Şengönül and Eryilmaz in [14] introduced and studied bounded and convergent sequence 

spaces of interval numbers and showed that these spaces are complete metric space. Recently 

Dutta and Tripathy [5] introduced the class of p-absolutely summable sequence 
i (p) of 

interval numbers and studied some important properties. Further development on interval 

arithmetic was done by Moore and Yang [11, 12], Fischer [7] and others ([2], [4], [6], [7], 

[13], [14], [15]). 

 

    A set consisting of a closed interval of real numbers   such that a   x   b is called an 

interval number. A real interval can also be considered as a set. Thus we can investigate some 

properties of interval numbers, for instance arithmetic properties or analysis properties. We 

denote the set of all real valued closed intervals by  . Any elements of   is called closed 

interval and denoted by  ̅ . That is  ̅  = {              }. An interval number  ̅   is a 
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closed subset of real numbers.  Let xl and xr be first and last points of the interval number   ̅, 

respectively. For x1, x2  , we have  ̅1 = ̅2    
    

,    
    

,   

                                             ̅1 +  ̅2 = {       
    

       
    

} and if   0, then  

                                                  ̅ = {         
       

}   

                            and 

                                             then   ̅ = {         
       

} ,   

                      ̅1 ̅2= {
       {   

   
    

   
        

   
       

   
}    

   {   
   

    
   

        
   

       
   

}
} 

        

    The set of all interval numbers   is a complete metric space defined by 

                               d( ̅1 ,   ̅2)  = max {   
    

,      
    

}   

    In the special case  ̅1 = [a, a] and  ̅2 = [b, b], we obtain usual metric of  . 

 

2. INTRODUCTION AND DEFINITIONS 

 

Let us define the transformation f : N   by k f (k) =  ̅, x = (xk) . Then  ̅ = ( ̅k) is called 

sequence of interval numbers. The  ̅k is called the k
th
 term of the sequence   ̅= ( ̅k).   

 

Throughout the article w
i
 will denote the set of all interval numbers with real terms.  

 

Definition 2.1 A sequence  ̅ = ( ̅k) of interval numbers is said to be convergent to the interval 

number  ̅0 if for each > 0 there exists a positive integer k0 such that d ( ̅k,  ̅0) < for all 

k k0. We denote it by 
k

lim  ̅k =  ̅0  
k

lim    
=    

 and 
k

lim     
=    

. 

 

Definition 2.2 An interval valued sequence space  ̅   is said to be solid if  ̅ = ( ̅  ) ϵ  ̅ 

whenever | ̅ |  | ̅ |  or all kN and  ̅ = ( ̅ ) ϵ ̅. 

 

Definition 2.3 An interval valued sequence space  ̅ is said to be monotone if  ̅ contains the 

canonical Pre-image of all its step spaces. 

 

Definition 2.4 An interval valued sequence space  ̅ is said to be convergence free if  ̅ = ( ̅  ) 

  ̅  whenever  ̅ = ( ̅  )   ̅ and  ̅k = 
__

0  implies  ̅k = 
__

0 . 

 

Definition 2.5 A sequence (xk) of real numbers is said to be a Cauchy sequence if for a given 

ε>0, there exist a positive integer K such that |xm – xn| < ε, for all m, n  K. 
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Burton and Coleman [2] defined quasi Cauchy sequence as follows. 

Definition 2.5 A sequence ( )kx x  of points in R is called quasi Cauchy if given any ε > 0, 

there exist an integer K > 0 such that n  K  implies |xn+1 – xn| < ε. 

The notion of difference sequence space for complex terms was introduced by Kizmaz [8] 

defined by Z() = {(xk) : (xk) ϵ Z} for Z =  , c, c0 where xk = xk – xk+1, for all k ϵN and 

studied the sequence spaces      , c( ) and c0( ) . 

We introduce the quasi Cauchy sequence of interval number in terms of the notion of 

difference sequence as introduced by Kizmas as follows.  

A sequence z() =  zxwx k

i

k  )(:)(
 
is called quasi Cauchy sequence of interval 

number if )( kx is a null sequence where 1 kkk xxx   for z = 
I

 , 
Ic0 , 

Ic
.  

3. MAIN RESULTS 

Theorem 1. The classes of sequence )(

I , )(0 Ic  and )(Ic are solid and hence 

monotone. 

Proof: Let us consider the sequence x = (xk) ϵ )(

I and y = (yk) be another sequence such 

that |yk| < |xk| for all kN. 

Then we have 

                                                   











1

_

0,
k

kxd       

                                            and  

 

                                             



























1

_

1

_

0,0,
k

k

k

k xdyd    

                                                                    < . 

This implies y = (yk) )(

I  and hence the sequence space ( )F

   is solid and hence 

monotone.  

 This completes the proof. 

 

Theorem 2. The classes of sequence )(

I , )(0 Ic  and )(Ic  are not symmetric in 

general. 

Proof. The proof follows from the following example. 

 



Journal Tri. Math. Soc. Vol. 22(Dec-2020)           ISSN 0972-1320 

92 
 

Example1. Consider the sequence (xk) = {A, B, A, B, A, B . . . . .}  

      Where 

                                          1,  1A 
   and   

 

                                         

 2,  2B  
 

Then clearly, (xk) )(Ic .
 

Now, consider the re-arrangement (yk) of the sequence (xk) as follows:      

           (yk) = {A, A, B, B, A, A . . . . .}. But
 
(yk) )(Ic

.
 

Hence  )(Ic  is not a symmetric space.  

Theorem 2.  The classes of sequence )(

I , )(0 Ic  and )(Ic  are not Convergence free 

in general. 

Proof. The proof follows from the following example. 

 

Example 2.  Consider the sequence (xk) 

                                 









kk
xk

1
,

1
 implies 












1

1
,

1

1
1

kk
xk . 

                Now,  

                                  














1

11
,

1

11

kkkk
xk = 


















)1(

12
,

)1(

12

kk

k

kk

k
              

                 Then, we have 0lim 


k
k

x .           

                 This implies, (xk)  )(0 Ic . 

Now, consider the sequence given by  

                                                    kkyk ,
 

                                   and then
               

                                                

 )1(),1(1  kkyk

   

 

                  Now we have 

                                                )1(),1(,  kkkkyk   

                                                     =  )12(),12(  kk          
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Clearly,      

                                           

(yk)  )(0 Ic .
   

Hence the space is not convergence free. 

This complete the proof 

Theorem 2.  The classes of sequence )(

I , )(0 Ic  and )(Ic  are sequence algebra. 

Proof. We prove the result for the sequence space )(

I . Consider the sequences (xk) and 

(yk) such that x = (xk)  )(

I  and y = (yk)  ).(

I
 

Then, by the property of the space, we have that 

                                    





1

_

)0,(
k

kxd
 and 






1

_

)0,(
k

kyd
.  

Now, keeping in mind the algebraic properties of the space we have, 

                    














1

_

0),(
k

kk yxd
= 















1

_

0),(
k

kk yxd

 

                                                 
= 

)]0,(.)0,([
_

1

_

ydxd
k

k 



 

                                                  ≤ 





1

_

)0,(
k

kxd 





1

_

)0,(
k

kyd
 

                                                  < ∞. 

Thus, (xkyk)  )(

I
 

Hence, the sequence space 
)(

I
 is sequence algebra. 
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1. Introduction: 

 

Levine [1] introduced the notion of semi-open set in a topological space. Crossley and 

Hildebrand [2] introduced the notion of semi-closed set. Njastad [3] introduced the 

notion of α-open sets and Abd El-Monsef has introduced the notion of β-open sets. 

Later on many researcher have investigated these notions and also contributed in 

these directions. In this article we generalize these concepts on considering these as 

operators on the subsets of the topological soace. 

 

2 Definitions and preliminaries:  

 

First, we introduce some of our own notations in context of topological spaces. 

Interior of a set A in a topological space X is generally denoted by int (A) or A
o
. We 

write 

                             i(A) = int(A). 

 

The following results can be found in general topology books:- 

i(A) ⊆ A, i() = , i(X) = X 
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i
2
(A) = i(i(A)) = i(A). Thus, we can write i

2
 = i. 

i(A)∪ i(B) ⊆ i(A ∪ B) 

i(A ∩ B) = i(A) ∩ i(B). 

A ⊆ B ⟹ i(A) ⊆ i(B). 

A set A is open ⇔A = i(A). 

Complement of a set A is usually denoted by A
c
 or A’. Here we use notation 

c0(A). 

So, A ∩ c0(A) =, A∪ c0(A) = X. 

Result 2.1.   Let A be a closed set, then c0
2
(A) = co(co(A)) = A. Thus, c0

2 = I, where I 

stands for identity set function I(A) =A, for A a subset of (X,  ). 

The following result can be found in literature on topology. 

Result 2.2. Relation between closure of a set A is denoted by Ā and int A is given by  

                                     Ā = (int ). 

 Note 2.1. Let us write c(A) in place of Ā. So the above relation gives  

c(A) = c0(i(c0(A))) = (c0ic0)(A). 

So, we can write c = c0ic0. 

We have the following results from the literature. 

Result 2.3.  A is closed ⇔ c(A) = A. 

For any two sets A and B, we have c(A∪B) = c(A)∪c(B), c() = , c(X) = X, c(c(A)) 

= c(A) .i.e. c
2
 = c. Also, i(A) is the largest open set contained in A and c(A) is the 

smallest closed set containing A.  A ⊆ B ⟹ c(A) ⊆ c(B).  Exterior of a set A, written 

as ext(A) is defined as ext(A) = int(   ). 

Remark 2.1. In our notations e(A) stands for ext (A). Then e(A) = i(c0(A)). Thus e = 

ic0. 

 Also, ie = e and ec0 = I, e() = X, e(A) ⊆ c0(A), e(A) = e(c0(e(A))). Thus e = ec0e, 

e(A∪B) = e(A)∩e(B). Further we have, c = c0e and ic = ic0ic0 = (ic0)
2
 = e

2
. Thus e

2
(A) 

= int Ā. 
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 Hence, e
2
A ⊆ Ā = c(A), so we have A⊆Ā ⟹ int A ⊆ int Ā ⊆ Ā. Thus i(A)   e

2
(A). 

When A ⊆ int Ā, A is defined to be pre-open, when     ̅̅ ̅̅ ̅̅  ⊆ A, A is defined to be pre-

closed. 

According to our notations, we have 

A is pre-open if A ⊆ ic(A), A is pre-closed if ci (A) ⊆A. 

3. Properties of closed set and open sets. 

Definition 3.1 (Levine in [1]). A is semi-open if A ⊆ ci(A). 

Definition 3.2 (Crossley and Hildebrand [2]).  A is semi-closed if   ic(A) ⊆A.  

Definition 3.3 (Njastad [3]). A is α-open, if A ⊆ ici(A). 

Remark 3.1: A is α-closed if cic(A) ⊆A.  

Thus α-closed set is semi-closed. 

Definition 3.4 (Abd El-Monsef [4]). A is β-open if A ⊆ cic(A). 

Note 3.1. β-open is also called semi pre-open. A is β-closed or semi pre-closed if 

ici(A) ⊆A. Thus we have several generalisations of open and closed sets.  

The main objective of using this notation is that we shall generalize these notions 

farther in the next section.  Let us write c1i1c1 = c2. 

Thus, c2(A) is a closed set . So if c2(A) ⊆A, we say A is c2-closed instead of α-closed 

we investigate some properties of c2-closed sets, as follows: 

Property 3.1. (i) c2() =  c1i1c1()   = , c2(X) = X. 

    (ii)  A⊆ B ⟹ c1(A) ⊆ c1(B) ⟹ i1c1(A) ⊆ i1c1(B). 

                           ⟹ c1i1c1(A) ⊆  c1i1c1 (B) ⟹ c2(A) ⊆ c2(B). 

 

  (iii) c2(A)∪ c2(B) = c1i1c1(A) ∪ c1i1c1(B) = c1( i1c1 (A) ∪ i1c1(B)). 

                            ⊆ c1i1(c1 (A) ∪ c1(B)) = c1i1c1 (A∪B) = c2(A∪B). 

                         So, c2(A) ∪ c2(B) ⊆ c2(A∪B).        
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                        = c1i1 [c1 (A)∩c1(B)] ⊆ c1i1c1 (A∩B) = c2
 
(A∩B). 

                         Hence, c2(A)∩ c2 (B) ⊆ c2 (A∩B).     

                                                                                                                                                                                          

Theorem 3.1. For any set A, c2(A) is c2 – closed. Now we shall show that c2(A) is the 

largest c2- closed set contain in A. 

 

Proof. For this we need to show, c2 (c2(A)) ⊆ c2(A).  

 

Now, c1c2 = c1c1i1c1 = c1
2
i1c1 = c1i1c1 = c2. 

 

So, c2c2 = (c1i1c1) (c1i1c1) = c1i1c1
2
i1c1=c1i1c1i1c1=c1i1c2. 

 

Also,  i1(c2A) ⊆c2(A)⟹c1i1c2(A) ⊆c1c2(A) =c2(A). 

 

Hence,  c2(c2(A)) =c1i1c2(A) ⊆ c2(A). 

Thus, c2(A) is c2-closed. 

 

For this, let B be c2-closed such that B⊆A. 

 

Then, c2(B) ⊆c2(A) ⊆A. 

 

So, c2(A) is the largest c2-closed set contained in A. 

Also,   i1c1 (A)⊂c1(A) ⟹c1i1c1(A) ⊂c1
2
(A)=c1A 
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      ⟹c2(A) ⊂c1(A). 

 

Theorem 3.2. If a set A is closed or c1-closed then it is c2-closed.But the converse is 

not true in general. 

 

Proof: If A is closed , then we have c1(A)=A. 

So, c1c1(A) =i1(A) ⊆A⟹c1i1c1(A) ⊆c1(A) =A. 

Thus, c2(A)⊆A  i.e., A is c2-closed. 

But, converse is not true i.e. c2-closed  c1-closed. 

 

The second part follows from the following: 

 

Example 3.1. Let X={a, b, c}, τ={, X,{a}}, A={b}. 

Here closed sets are , X and {b, c} so A is not closed or c1-closed. 

But, c1(A) ={b, c}, i1c1(A)= , c1i1c1(A) =  ⊆ A. 

So, c2(A) A i.e. A is c2-closed. 

 

Example 3.2. Let X={a, b, c, d} and T={, {a}, {a, b}, {a, c}, {a, b, c}, X}. 

So, closed sets are , X, {b, c, d}, {c, d}, {b, d}, {d} 

Let, A = {b} then A is neither closed nor c1-closed. 

But, c1(A) ={b, d}, i1c1(A)= , c1i1c1(A)= ⊆A. 

So, c2(A) ⊆A i.e. A is c2-closed. 
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We shall use the notation,  i2=i1c1i1 

Then, i2(A) is an open set we define a set A to be i2-open if A⊆i2(A). 

 

We have seen in definitions and preliminaries that this has been defined as α-open by 

Njastad [3]. 

Note 3.2. We have,  i2()=, i2(X)=X,  

i1(A)⊆A⟹c1i1(A)⊆c1(A)⟹i1c1i1(A)⊆i1c1(A)⊆c1(A). 

So, i2(A)⊆c1(A). 

Thus, A⊆ i2(A) ⊆ c1(A), i.e. there exists an open set which contains A but is contained 

in the closure of A. 

Also, A ⊆ B ⟹ (i1c1i1)(A) ⊆ (i1c1i1)(B) ⟹ i2(A) ⊆ i2(B) 

We establish some results on algebra of subsets of X is (X, ) 

Theorem 3.3. if A and B are i2-open then so is A ∪ B. 

Proof: Here, A ⊆ i2(A), B ⊆ i2(B). 

Hence,  A ∪ B ⊆ i2(A) ∪ i2(B)  

                       = (i1c1i1)(A) ∪ (i1c1i1)(B) 

            ⊆ i1(c1i1(A)) ∪ c1i1(B)) = i1c1(i1(A) ∪ i1(B)) 

            ⊆(i1c1i1)(A ∪ B) = i2(A ∪ B). 

Hence, union of two i2-open sets is i2-open. 

Theorem 3.4. The intersection of two i2-open sets is open.  

Proof: Let A and B be two i2-open sets i.e. A ⊆ i2(A), B ⊆ i2(B) 

⟹ A ∩ B ⊆ i2(A) ∩ i2(B) = (i1c1i1)(A) ∩ (i1c1i1)(B) 

= i1[(c1i1)(A) ∩ (c1i1)(B))] ⊆ i1c1(i1(A) ∩ i1 (B)) 
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=(i1c1i1)(A ∩ B) = i2(A ∩ B) 

 

This also shows that i2(A) ∩ i2(B) ⊆ i2(A ∩ B). 

Now we show that for any set A, i2(A) is i2-open i.e. i2(A) ⊂ i2(i2(A)). 

But ,i2c2 = (i1c1i1)(i1c1i1) = i1c1i1
2
c1i1=i1c1i1c1i1. 

So , (i1c1i1)(A) ⊂ (i1c1i1c1i1)(A) 

⟹(i1c1i1)(A) ⊂ (i1c1i1c1i1)(A) ⟹ i2(A) ⊂ i2(i2(A)). 

Thus, i2(A) is i2-open. 

Now we establish a relation between i2-open sets and c2-closed sets.  

Theorem 3.5. If a set A is i2-open, then its complement c0(A) is c2-closed and 

conversely. 

Proof: Let A be i2-open then A ⊆ i2(A). 

Now, 

     c2c0 = c1i1c1c0 

            =c0i1c0i1c0i1c0c0  

           = c0i1c0i1c0i1     [ as c0
2
=i 

 
] 

           = c0i1(c0i1c0)i1 

           =c0i1c1i1 

          =c0i2. 

Since, A ⊆ i2(A) ⟹ c0i2(A) ⊆ c0(A). 

⟹c2c0(A) ⊆ c0(A) i.e. c0(A) is c2-closed. 

Now, we show to the converse part i.e. to show if A is c2-closed then c0(A) is c2-open. 

For this it is sufficient to show that if c0(A) is c2-closed then A is c2-open. Thus 
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c2c0(A) ⊂ c0(A). As seen before c2c0=c0c2. So c0i2(A) ⊂ c0(A)⟹ A⊂ i2(A) i.e. A is i2-

open. 

 

4. Further generalization of closed sets and open sets. 

 

In this section we farther generalize the notion of closed and open sets and establish 

some results. We can generalise closed sets further by defining c3=c2i1c2. 

 

Thus, c3A is a closed set. 

 

We define A to be c3-closed if c3(A) ⊆ A. 

 

Theorem 4.1. A is  c2-closed ⟹  A is c3-closed. 

 

Proof: Let a set A be c2-closed i.e. c2(A) ⊆ A. 

 

Now, i1c2(A)⊂c2(A)⟹c2i1c2(A) ⊂ c2(c2(A)) ⊂ c2(A) 

⟹c3(A) ⊂ c2(A) ⊂ A. 

 

Hence, A is c3-closed.  

 

Remark 4.1. The converse of the above results is not true in general i.e   if a set A is 

c2-closed, it is c3-closed but the converse may not be true. Example similar to earlier 

once can be constructed. 

 

Proof: Now, we show that c3(A) is c3-closed i.e. c3(c3(A)) ⊂ c3(A) . 

 

Replacing A by i1c2(A) in above relation, we have   

c3(i1c2A) ⊂ c2(i1c2(A)) = c3(A). 

Now c3
2
(A) = c3(c3(A)) = c3(c2i1c2)(A) = (c2i1c2)(c2i1c2)(A) 

=(c2i1c2
2
ic2)(A)⊂(c2i1c2ic2)(A)= c3(ic2)(A) ⊂ c3(A). 

 

Thus, c3A is c3-closed. 

 

It is clear that A ⊆ B⟹c3(A) ⊆ c3(B). 
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Note 4.1. Similarly, we generalise open sets. We define c3-open sets by defining A to 

be i3-open if  

A ⊆ i3(A), where i3=i2c1i2. 

 

We continue this process and define cn and in by  

cn=cn-1i1cn-1 and in=in-1c1in-1. 

 

Define, A to be cn-closed if cn(A)⊆ A and in-open if A ⊆ in(A). 

 

Clearly, a cn-1 closed set is cn-closed, cn(A) is cn-closed, cn(A) is a closed set and  

cn(A) ⊂ cn-1(A) 

 

Result 4.1. The relation between cn and in is given by cn=c0inc0. 

 

Proof. We establish this result by the method of induction. 

 

When n=1, c1=c0i1c0 which is true. 

 

Let cn-1=c0in-1c0 . 

  

Then,  cn=cn-1i1cn-1 =(c0in-1c0)i1(c0in-1c0) =c0in-1(c0i1c0)in-1c0 =c0in-1c1in-1c0=c0inc0. 

 

Thus the proof is complete by induction. 

 

We define i0 to be c0 also for then 

 i=i1=i0ci0 is true, since i0ci0=c0c0ic0c0=i 

 

We also establish relations between cn, in and e. 

 

 Theorem 4.2. The relation cn=c0e
2^n-1  

, holds for all n 1. 

Proof. Let  n=1, then we have  c1=c0e
2-1

=c0e=c0i, c0, which is true. 

 

Assume that cn=c0e
2^n-1

. 
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Then,  cn+1=cnicn=c0e
2^ n -1

.ic0e
2^ n -1

=c0e
2^n-1 

.e.e
2^n-1

 =c0e
2^n-1+1+2^n-1

=c0e
2.2^n -1 

=c0e
2^(n+1)-1

. 

 

Hence, for any positive integer n, cn=c0e
2^n-1

. 

 

Theorem 4.3. The relation  in= e
2^n -1 

c0 , holds for all n 1. 

 

Proof. Let,  n =1, e
2^n -1

c0=ec0=ic0c0=i. 

 

So, assume that  in= e
2^n-1

c0 holds. 

 

Then,  

        in+1= incin=e
2^n-1

coc e
2^n-1

 c0 

              =e
2^n-1

c0c0ee
2^n-1

c0 

=e
2^n-1

.e.e
2^n-1

c0 

=e
2^n-1+1+2^n-1

c0 

=e
2^(n+1) -1

c0 , for all n    
 

Hence the proof is complete. 

 

          

Corollary 4.1. For all n 1, in cn =e
2^(n+1) -2

. 

 

Proof. in cn=e
2^n-1

 .c0.c0 e
2^n-1

=e
2(2^n-1)

=e
2^(n+1) -2

. 

 

Theorem 4.4. If A is a pre-open set , then  Ᾱ=c1(A)=c2(A)=c3(A)=........=cn(A)=....... 

 

Proof. If A is pre-open then A⊂ ic(A)=e
2
(A). 

 

Hence, c(A)⊂ce
2
(A)=c0e.e

2
(A)=c0e

3
(A)=c2(A) 

 

Thus, c1(A)⊆c2(A). 

 

But, we know that c2(A)⊆c1(A). 
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Hence, c1(A)=c2(A) i.e., c1=c2. Thus c2(A)=Ᾱ 

 

Then, c3=c2ic2=c1ic1=c2. Hence c3(A)=c2(A)=Ᾱ and so on. 

 

Hence, Ᾱ=c1(A)=c2(A)=....=cn(A)=.... 

 

Corollary 4.2. In case of an open set, since it is pre-open also, 

c1=c2=c3=...cn=... 

 

Theorem 4.5. Let a be a β-open or semi pre-open set, then 

Ᾱ=c1(A)=c2(A)=c3(A)=...=cn(A)=... 

 

Proof. In case of β-open set, A⊆c2(A). 

 

Hence, c1(A)⊆c1c2(A)=c2(A)⊆c1(A). 

 

Therefore, c1(A)=c2(A). Thus c1=c2, and as above we have, 

Ᾱ=c1(A)=c2(A)=c3(A)=.....=cn(A)=.... 

 

Now, we express conditions of continuity in terms of interior 

 

Let f: XY, where X and Y are topological spaces, and f is a continuous mapping of X 

into Y. If G ⊆ Y then iG is open in Y. So f
--1

(iG) is open in X i.e.  if
 -1

(i(G))=f 
-1

(i(G)). 

 

Since, G is any set, so we have if 
-1

i = f 
-1

i. 

 

Conversely, let if 
-1

i= f 
-1

i. 

 

Let, G⊆Y such that G is open. Hence iG=G. 

 

So, f
--1

(G)= f
--1

(iG)= (f
 -1 

i)(G)= i f
  -1

i(G)=i f
- -1

(G). 

 

Hence, f
-1

(G) is open in X and f is continuous.  
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Thus, continuity of f is equivalent to the condition that  i f
- -1

i= f
 -1

i. 

 

Next we consider the case when f is an open mapping. Let G⊆X, then iG is open. 

 

Hence, f(iG) is open in Y i.e. if(iG)=f(iG). 

 

So, ifi=fi. 

 

Conversely, let ifi=fi and G be open in X i.e. iG=G. 

  

Hence, ifi(G)=fi(G)⟹if(G)=f(G) i.e. f(G) is open 

 

So, f is open ⇔ ifi = fi, and f is continuous ⇔ i f
-1

i = f
-1

i. 
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